Điểm nổi bật đầu tiên của sản phẩm này đó là băng tải làm chuyển hướng sản phẩm được vận chuyển với nhiều góc độ khác nhau ( tùy thuộc vào yêu cầu của mỗi cơ sở sản xuất). Băng tải chuyển hướng có thể kết hợp được với những hệ thống băng tải khác
Xe sơ-mi rơ-mooc. Xe tải và xe rơ mooc: 3 trục, 2 trục. Xe tải với rơ moóc: 3 cầu, 2 cầu, 1 cầu. Tạo bản in từ sơ đồ chất xếp. Thông báo kế hoạch chi phí. Lưu và tái sử dụng sơ đồ chất xếp. Kiểm tra phân bố khối lượng và mức tối đa cho phép. Top 10+ câu hỏi thường
GIÁ BÁN ~ 469.000.000 ₫. Xe tải Isuzu QKR230 1T4 thùng kín mới 100% là dòng xe tải thương mại hạng nhẹ được rất được yêu thích hiện nay. Với giá bán 469 triệu đồng cho bản thùng kín tiêu chuẩn, khá phù hợp với khả năng của khách hàng Việt Nam.
Xe rút hầm cầu, hút bể phốt chuyên dụng nhiều khối lượng khác nhau như 2 khối, 4 khối, …. Quý khách có thể tham khảo hãng xe, máy móc, phụ kiện, màu sắc, …. tùy chọn theo sở thích. Các mẫu xe đều có đầy đủ, chi tiết xin liên hệ hotline 0901.433.666. 1. Những điều cần biết trước khi mua bán xe hút hầm cầu cũ Có nên mua xe tải hút hầm cầu cũ không?
Xe có 3 phiên bản và được phân phối với tư cách là xe nhập khẩu nguyên chiếc từ Thái Lan, hưởng thuế ưu đãi 0% (đối với xe nhập từ ASEAN). Oto.com.vn nhận thấy mỗi đại lý bán xe Nissan Terra 2022 đều có chương trình bán hàng khác nhau. Để mua được xe với mức giá
Vay Tiền Nhanh. Câu hỏiHai xe tải giống nhau, mỗi xe có khối lượng 50 tấn, ở cách xa nhau 10 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P của mỗi xe? Lấy g = 10 &xA0; m / s 2 " src="dataimage/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAAAd8AAABpCAYAAAB75CmEAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABTMkaS0AAAFBdJREFUeNrtnQFkV18bxx+ZSRKTmSQxmZkkkkySMZkkMyYzk8QkmWQkf0nyJ5kkiSSZJGaSmYwkSRLJJEkk8zeTyGRmMt73Pn7n2u3Xveece++555577/fD8b7v/93/3vN7zrnne85zznkeIgAAAAD4tHvlvFcmvfLFK8te+e2VFa/88sprr9z3yoBXNsJcAAAAQHIOCWH9X4zConzbK1thPgAAAECfJq9MxBTd+rLklVMwJQAAAKBmi1c+pxTeYLkDkwIAAADRNHvlq0Hh9cstmBYAAAAI53kGwuuX4zAvAAAA8CdnQwTznfjn+7zSGPjb9V454JVz4m90xHfRK5thZgAAAKBGC9WuDPlC+d0rR2P8+12kt098BaYGAAAAalwPCOS8V7YneAbf732qEN8fXlkHcwMAAKg6LJorQhz5P3eneBa7o1Vu6IMwOQAAgKozEhDG8waex9GwViXiOwqTAwAAqDovhSh+InMu4fsS8R2HyQEAAFSZTQFR7DX43G6J+E7C7AAAAKpMnxDEWcPP5RX0KsQXAAAA+JsblF0AjE8R4vsQZgdFhYOe8305xEwF4G/aCPdMdRkSK9Esrv9MRbTBNZgdFA3en7lEtWwh3Il/OV7fDqqdpOSZLl8/4Ag3fJWBU45xPlC+yP9YfIzdhPt/wAz/SMR3N8xjjccRbdAP04CiwPfwLgrxCnZiF8WXJwh8XSFJVhS+gP8v1bKqAJCU9xH96wtMY5XpiHZAnl/gPBvELP5nRCd2TXzPh0wQ6mO7PhOr4BXJ3y2LyQZWwiAucDm7w9uQNpiFWYDLcJSYUbESlK0UXRHfNvFRhdVxQfyWlpB/b5dXxiRCzCuYVnQHEAOZy3kPzGOVsO/6HMwCXKRRdM4F0nPTuiC+PfRnQPZg4QMXTRrPaI2YJf9PrPoPoGsATaJczl9hGqtsDmkDPuvRDNMAl2igWtouXdF1RXyPUfRdvrhRbHi1P0PRbugudBOgYIfkW7kK81ilL6QNbsIswBV4T/OMV/6jZMmp8xTfXkm9XiZ8Jh8s+yD5rXAbAhkyl/NemMcqd0NWvThoBZwQ3VNemRMdk1ePr0SH5T3Q146Lb6dYjYbVaSnlR9YuPtSwZ3OqM7itQBRRLudvMI318e17XRtchlmAC/iRX/jU70iEoNxzVHy5rjL3uImsKFckz59B9wEhtEr6zBjMY5WjIZOf9TALcAEOlNGh+JsWR8V3WlKfBUMfGbufZVeWhtGFQB2jkv6yD+axyktC/l5QkhWyK+I7oKjPJYPvuip5D5+A3ozuAQJEJXCfg2ms0gmvAygDTxwSX17Ryg6G8b61yQMV2xW/HXGtgY/M5Xwd5rFKcN/9DdVucgBQOB47JL4XFHV5nsE7XyrEvg1dBBBczq4wHLA7H7hqgUkAxDcdDfT36cX6ciqD955RvPMuugigaJfzPExjjW20FmyHb0LgaheA+BrgBKkPf2Vxh2+H4p2/MbuuPDKX8w2Yxwp8tehNwO5HYRIA8TXDK0U9sgzdN6d490V0k0ojczkjLKkdrgdsfhzmABBfM2zTWPWOZ/j+h4p3I01ctYHLOV8GCUkTAMQ3E1T7rlnPdoc13o/9pWoiOxEPl3P27Ke1SHeIYAUgvoaZ0hC//Rm+v0vj/cjTWk3gcs4PDgPrpzy9BXMAiK9Z+CDFiqIOq5Rt0vtGDfF9h65SSaJczgswTabw4cp5YesHMAeA+JqnU0P4bOytLWpMADaiu1QK2VkErMSyg28XfKO1fN3Owi6za2IQ5XuSy2KgWBEDCs/cHlEtGH1XxisIAPGNy2kN8bXxAU5r1KMo1xvYXcdhOPmg2GiMlcZJscrgMWNJjCG/RR94RrU9NxNBR5qolqf5PtWya/0S7/ktxqwZ8a4dOdvxnKQvuJz7mcf47oAuzAtd8G3MbfvZKxPiN7Y6VHcO6eqn/OSgOs5Fr9pEtesP8xQ/P+uyEONeQlgukL/4PqR8Tzr7PKBi7/t2CMH6SPGChBzxyouYY8g4JYt7zYfWJik6nWNYuU/5xdh+G1Gn7472gY0pdGG8brLjx1jfYFnXfJu/dtHTxLPTnxTuFvsmZqgfxf9WGXxFDL582vQwwa0G8bUvvm80+uklC3a4qlGPx46tbnj1xfcfv1L8CF0dpJ/TOaz8F2MVzO96muJdPK5tt2zformceyg6DeeqaC/Whle0FiUqrLwQE2JfP2xNfDiuux/qdVZ4R5ya1UxEzMJGQoRznZjVvk3R6aMKgPiaYkWjvw1asMOQpuDk7ZIbFJ6rJc1vNUx8hzXtrrMXr4r+dTHmSldm+2aLti6SyzmqrjNCAxoi9GRQYwJm40R3g6irP9Ey3c6P0rTZ5ggRndWs6AWC+AL3xHeDZn+zsdfap1GPrE9dywan2YTfar343jE8FryMqHMLyZNWJClPLNo8SpRcczmfpPCQqHEmrP2S1XC3hd/wJDCZ25qRfRKdVdgYIbw/KF7M2fMQX+CY+B7U7G89FuxwWLMu7Tm0kX8VilOp8d4c74N+jCm+/IypkEGaBz5OWNEpXH++12wX1fKk6mxfDdXVt4P+3HfkbbJbYoLTEpjArBN/eybG77EhBtuoGIk22iM8GMMJnrU3QoCz/vYeBiY1pjOI7aTaGadXaWcF9WUkwbPS7LtAfCG+punV7G82XF8uTQTqYZHaHfLPb2mKb2PAree79k6T3hkPtr3KxR0Mv9lJa2dSWLgvk/6hnX81fs8LC/Y+l7P4p9GGjyme1x/yvMMZ1t/3wvAJ9z2Gn82TOn8P/GSSB5yRDIiNCZ7XqjGT/Wax83ST+f1oV4tLh3VcEd9BTdvZOAi4SbMu/Q61XaOGMN4LTLp5FTBK8V3nxzVXpJ2B1RN75pJEJbur8a6sryBFuZx/kjtXNaPCXqY9kV/vHenNqP5jgT55wOD3wJPoawGPwHLAo6NNM0X74R8ZmG3Iiq0DBRDfaovvSU3bNVqww3rNuriWUWVSs94Lwg2XlE+k3vv9GRCpXQnf00RrsXyjymiG9txKxXA5j0TUsS/lc9ssTDYvWRx37ySp4DXJA4cNGjfPTgbxrbb4Xte0nY3VRqNmXVy763tDo86Lwg2XlSu2/lBa2sn7fcU7pjO0Z1Fczo8i6mjCTRwMODNgadKQVemMW8EGhTvpSEoDPCc3rlRAfKstvnfJrTMGOnW57Vj7nSA7p8XbNO1zwcC7+kkdKCgrXksmMC5FB4y6QmpCLIPj8pDBOh8nu2Nuov3vY5TtiT+dD7bFQgeC+EJ8iya+dx1rvyGL9lPdDf5g6D3bNX7T1gxsuYXke+cuERWLfMLQ81MdVgqhj+yPuYly/6rcLmnFt1mj4r0WOhDEF+IL8S2O+KoCMph0B6sOhmZxClfmEu1xrN2jxPe3oYmJfzboqoFnHSYzgVbilFVKGKzjfcbiy6gu7Q9b6EAQX4gvxLc44qs63GVSfFVZpgYysOUryTfgWkIaWVhWE6tf/xqgiVCaz3IYbxMHZFG5d0zMwlSra9f2tkD5xFc32hLE1w3xHbcovqqwuCOG7ShzOd938LtVjd9nUz6/Qawe71KFaCA7ByhOFGyQAeUTX50gEa6Jr2tB9W2Kr81TyE8tt4PM5XzEwe/2iEa7X8bwFg+dKw9DFhoP4gvxzVp8hwsovpccaz+b4qvaJjApvtOWx6eoONR868TFHOhcpzmNtuctzN0Y5syJ7x0D79mreMdVNAXEN2Px1REOW0E2dO/5uhZkA+KbHpnLedzhb1f3+/G3ETcTUKI66ffUwDtU4fSG0AwQ34zFV/f6gY2E3roZlvodaz+Ib3pkLuejjn+/MzEEmCOPncKQJ+crqS+Zp3WFqMLpHUIzQHwzFt8ezUGjzYIdmjXr4tqVE4hveormcq7vt3MU7yQwXNESHmkYMG0It40kvyPVgGaA+GYsvk2ag4WNiWCXZl1aIb6lEl+Zy/lhQb5hTi34neJfx2EbwhVdh04Yrpsp37FL8uznaAKIrwXxJdLLF2vjtKnO6dFVB1dCEN90yFzOvQX6jlmA5xMIMFzRdfD+kyqzxy9Kl2pNtt92HE0A8bUkvjpJ1I9ZsEO/Rj3mHGw/iG86olzOHGuhaN4/XsW/pWRBKTjo0l4MhzWuahjsYornR2VD+Ubu73OA8oivzhbLaQt20ElvOAnxLZX4tlDxXc718Kn925Q8MtRNspM/22nYAP9pDIxJ4njK7oj1EYD42hNfndyeNu6c64S6dDFoAcQ3OaeoHC7nMDiechI3tL8A21f1gZENoHI/v0jw3KjgBuMEIL52xVdnr/WRA3ZwNdIRxDc5L6g8LueoBdwY6Z2rCDvfUPm94B4NAY4Te5RPa4YFLZ8hO8EMAMS3foDQuRqRNe80BqMNDrYfxDcZLTlP9mzSrmFPBFuKgDfCFzQ6viqF0q4IV8R4TsKLrEYQX+aDog4rFuqgSmby3tH2g/gmQ+ZyLuvW2wFSZ8wLKxeqLsB8H2tCY6AcE0b2xZT/k+8w3g5xP/Dfn8zxN0F8Ib7Mdcr3fm1rgVcAEN9kRLmcf1fAA8jpGL/FHL8QlINqG+mfDYgBn9zcmvNvgfhCfJmDGvbLcjWic82oE+JbGvGVuZwnqBrwnvYo1e756oxfryC9Ndo03GRRs7oHVHM/uwDEF+LL8On7H4p6jGX4/huKd887PBZAfOMjczn3UzFg+ywYeA7fDX6uOYa1V11499BaKDEesC6J1TAHIjhPtf3bSdE402JwvSFWDusd+y0QX4ivz01FPV5m+O43OQo/xNe++JbB5ezbx9R2zD2NfjRSZeHtEYOhfwm8qeC/B+IL8fXZTerTxlkMjBtJfRWjA+JbGvFtlrR3kVzOvn2GLdq8sldRLwSMcL4kvwniC/ENojqJmUXgg2NU7L0uiG88ZC7nwQKK75TBZ7ILWnatdYoqRqNY5foG+IcAKKf4qhKKjOfw+12/dgLxjYfM5by+QN/tdKDeJu+f37HUvs7DRn1OOHEGqiG+fPBKFlJ1mcy6njeLwSvqfZ8L0H4QX31kLucnBftug/YxeV20Dyvf2kA0Q9W4/A0gvj6nFPUxGfJuVPGuAYhvqcS3LC7nevuYDABziLDnGxp44DIBYJYpx8SXJ52zFlajfM9xTvKetwVpP5viqzoRa9JmMxmIb1lczmGTky4L4nuSKkA7yQ+A8JFvvl60lcoRABzkhypgy68c6sQnn2UnkE9kvOrlwbijIO2nkwrRFOOkTsxuClVGt3sxn1cml3OY+L4z9NwBir5t0EwVQCfcnqnCA82SaLwHwvgbCFSBDaS+ZrNK+eR3PiupE99z35zi2Vto7cpeWDlboDbUSYVoigmLfUUVRChuvt1hybOGSiC+XM4YeO4kZRPOszBMUr7XYvhgC8eyrXxS5ZJzUrM/dOVUv/tk/vAHi8MLgyuqvHmq0X4tht71WuNdew28ZwuZD3f4TLL4KOI4Nx0xbu9J8cz2iMk4Z8HbShXhCrlxN3UuZWMCd+EB56tmP3iWYz1lq607CZ73iOTxzouE6rS2yYNjDZrvMpGA4gzpeew2xbBTlIenqNdnpiVeoZ0Jnse2jDpr0UsVgn3rC+SGALN77gC0qlTwSuhlzH5wi/JxPzM3FYLZpPmbZxS/r2iMa7YdD6ppDxSd1XwXb2GliR2/I8bYp9tmMpfz8ZKJrz9mx7kV0CoR3rNUQbZpunlslJ+iPqC4sEAdEQPWUsJ+wGnIOJY4n4i0HQN3QLi/wurFMc4vRPTRVlHnRclAVaRrJhvESuRVzLabFb8zTkjadcLz9S+pzwaEbVvt0ZywrRd9847m6jpY2O1+VDG5eGZg9Vwk8fUL58k+LRm7uX3GImzO7X2i6oMmDzomUgimLVMEisR+sYLgidNKRn1iRTyf32MjG8wWjdUei+kLUX4p/pZd0EXYy+oX7sQlMnemgycsDyTvWowpuLJDWH4fqadbo43ivmtRTBaCk85ViXAXlemYtuG+81H8ex8UYwLrzT4MoWv4M90vVLtUvUr2BRgJlYuD7bjZNk+M8sGQ2wkH7mWxwtpZoLYcyqjNpi2+K+zU9eGM3hN0R8sOFRZ5ZTdN2ZzxOUf5bS85R0tAeL/TnycX24S7Zki4D/h06GRgdvNDDFDLYqbjl6TCfQPNARyCB4lDYqXzWExMlwL9nP/7V/H/XRV/i4GlWkzVjX1+WabiZ4Wrp0FMKnlbwk8vOyVEdTFEBxbF6p+1owtd5U/20trhAxbMgxm8o1G43nhg4vCVV0SDhO0DzKJJAAAAlJmj9Gd6p3OW398kVgv1eyoAAABAKak/Gp/nPcvzdXVpRPMAAAAoGyP09ym1PE9k8h7Zd4gvAACAsjJIbmYyekJwOwMAACghHBUm7O7VFofE9xOaCQAAQFlg1+7HEOGdd6R+fpCPu2gqAAAAZeE4hd+rnXGgbjsC9UGMZwAAAKUhKobzdwfqdk/U5T2aCQAAQFng08OyiFN5hsHrC9TjIJoKAABAWdhN8pCOz3OqFwf58KNcYa8XAABAqdhJ6pjKHLPZVkxaTrJ+I/Dut5Q+FygAAADgFOtIL4flO0qXpFoF5wkdpT8TWfPVomY0EQAAgDLygOKlAesxtBLmLBicAYMPVS2HiD2EFwAAQGlpDRE/nbyknD7wohDQ/WL12hAisPzPOUMS7+PytSZ2Y3OawqiDXg8JrmYAAAAV4BjZTX4eVjiO9DCaAgAAQNUEeCUn4Z0WK3AAAACgcnRQLWm9LdHlvd1DMDsAAABAdMIrXzIS3FWx0kXgDAAAACCEw16ZoPTu6N9CcE95pQVmBQAAANTw1aJuqt3F5atJnHThB9VOPa8EyqJXPnjlMdUiU/EKupPsBekAAAAAnOT/qDr66qL0thwAAADhdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPmc8L21pPjxtbz49PC9tbz48bW4+MTA8L21uPjxtbz4mI3hBMDs8L21vPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5tPC9taT48bW8+LzwvbW8+PG1zdXA+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPnM8L21pPjxtbj4yPC9tbj48L21zdXA+PC9tYXRoPjhrG/cAAAAASUVORK5CYII=" style="width height margin-left margin-top transform rotate translateZ0px; -webkit-transform rotate translateZ0px;" title="straight g equals 10 space straight m divided by straight s squared"> .Hai xe tải giống nhau, mỗi xe có khối lượng 50 tấn, ở cách xa nhau 10 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P của mỗi xe? Lấy .25. thíchHai xe có khối lượng cùng nhau nên có cùng trọng lượng P = mg = 50000 . 10 = 5 . 10 5 N " src="dataimage/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABPwAAABqCAYAAAAoTU+7AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAABUrCIHcwAAJSRJREFUeNrtnQ+kl0nbxy/HceRIrJUkiSTJSiQrSSI5kiSStZIVSZK1IlkrWZGVJIkcSZJIkiTxSLKyIllZSWQlWUckKzmOeN77en5z3vPr1/1n7j8z99z3/fkwnvd9ntM9c81v5pqZ71wzIwIAAAAAAAAA0AxWRekU1QAAAAAAAAAAANBsRqK0K0pvo/QT1QEAAAAAAAAAAFAfy6L034rSZJTmUKUAAAAAAAAAAAD1MS7VCX7nqU4AAAAAAAAAAID6WBClT1Kd4LeSKgUAAAAAAAAAAKiP36Q6se8h1QkAAAAAAAAAAFAfo1H6V6oT/HZTpQAAAAAAAAAAAPVxSKoR+qaidDVKQ1QpAAAAAAAAAABAPag490pmRLttVAkAAAAAAAAAAEBz2SUzYt8LqgMAAAAAAAAAAKDZPJUZwW8/1QEAAAAAAAAAANBcNsiM2PdGuHsPAAAAAAAAAACg0dyXGcHvMNUBAAAAAAAAAADQXFbKjNj3IUqzqRIAAAAAAAAAAIDmcllmBL+/orQjSkuoFgAAAIB28A2TOwAAAMZf6BQLo/RJZgS//vQxSteld8T3W6oKAAAAoHksiNLrKJ2nKgCgBF9F6Vd8CQDjL/6lMZyUeLEvLr2P0pUobY/ScMPtnhOlrfz8jer//F4AAAA5mBulPVGaMBO5lZ7yXR6lg2bS+NhMICejNCW93WQtz40o/RaljRLuS3HYgR0ws3A6Kr27n9SX/Bt4eWkr0NXxF/+Cf+lndl+95k36O5yK0qIGtikVLP8xv8liulgjuGna3S3pbZS0ml0FO2Xe9Mk4p4/GUenz3HeidFV6OytajrEojdD+AACc8sSDz3/oYcKuR0KeFyjb2ygdj9L8QBYe2IEdMLNY/MXMEwcXgiGKBrQV6OL4i3/BvyRxpIL2q6LZiSjNakCb+lp6R5Sny35PepFjdXG7gvo/W0O5XfrDGwl5HpLPI02/a7Pz8yX45REGn0bpdJQ2CbugAABVssGTL9/t0IbDMRP2wSMi/5HeTvhkyt99NJP/usYZ7MAO6DEapZ+j9E6SIz9CgrYCXR1/8S/4lyQ0nzcVtmN97CPkuyg1mnKir7wagVn3seTr5ncvW/e7PJd70qE/vJqS75jp/9N/e1GaITQX6pzzorTZ/LiXovS3hCMA6o+gSvMKxisAgNI88OC3JxxNMJdG6c+EPPUoxSEzng2i48fJlAmFRlz4PIKBHdgBPWaZ+n1rMRcMAdoKdHX8xb/gX7LQiMIXpr71WO+nCtqzirRrA2xbx6X+qLg09MSkBk6dLiim6b9ZVUOZ9bfeacr9tEC5VXC+YL6xwtIXrpTPhVvNd2FXnOQW6V36GlL03/0orWb8AgAoxEpPvvqYg7IP7sL1J71/w+YIhU54H6VMKtd5+A2wAzugN7H/ySxibTd/64a2Al0df/Ev+Jei6DFqDSrS+yUv5/hNBn+fNYG0LT3Ce2+gfKcC7w/aLv4qUO+qA82tuezbJTkyd/AY+D4pvtmhAt8r+XzjZK10hCWmAvOo8N/Ll/fwaXjrHONotpkf5JJxSkXUfw3NnMd4BgCQi6vi51qGqnfGdqaMFZdyfkt3/O9K8vGXDQ7rHzuwo+vofPDHAou+uhfktBXo6viLf8G/VI0G75yWZIEz6V7CuqOgNf/BU5AnG9I3VDB+XMCnaFRy3RHD+mjN+4xybqsgH41Q7Rf9NMqxM6/4XsvRKA4V+L6Kg6re3pB84p8qr5uZPwAAWLFE/EQXXK+43NsyJiJF0B3npykTfxfHGLADO1Z12P/oguGAFD85UueCnLYCXR1/8S/4F5eMit2R6/47/eq6X+1b+fzYp6bxhvUTjdYrcm3bmQDKfiilfJcqzEdFv8F7KFv9mMc0eR71GKugkk/nbIQ/M48AAMjkrKcFx/oKy6xHOJIuH9b7YRaU+PYySY5gfyPVHmPADuxwYUdTFuJ6qmN611w3dn83CyWNjHgY+IKctgJdHX/xL/gXX8wxopLNb3W6hvJtkC+jEW80tM98Y9pW6I94DPKVJAeGLas4L/3eoAi9s+3OdH2OxrCxojy/lXyv/BxlLgEAkMhcyXc9Q5FjROqzD1Vc5rRjOYcryOPXlO/fxQ7sCNiOpvDM2K1HiQ4mLDIvBLogp61AV8df/Av+pS7NYcLi91ruuUyDApleSdbkl1x/KOBnVJiuOzL0d4mP+nTBWvlSYNzSZmc6Kv4FP0Wj/fKEZu9gTgEAYDXpe9aAMt9O8ff/VDTZ0mMvafeC7MUO7AjUjqZw1GJxNi/QBTltBbo6/uJf8C91ob9X1l1zVz2V5Vv5MrJvQpr/jsCIFNtc0EjaOiND48T7Sw7z2yfhiZ7OGJJ6BD9Fn1O2fUr6nfCQBwDAIKMxE77dgZf5O/EX1X0iY1z5GjuwIzA72sizwBbktBXo6viLf8G/1I0e33wi6S+yuo6wWyRfRhtqxFcbXlIvKvhpuldjufdJNe9H5GHwsSUV4+e31VHWJfiJcXq2+Z8WAADoZ/CiW92hGwq4vDqJS4vu1gnXggrzW5QxrpzHDuwIyI62cjOgBTltBbo6/uJf8C+hoKJK2mMe2x3mrYLji5g8j7WkP5QR/DSdqqncO2LK4vpuPW0Lg9fM6ZHu4TY6yjoFPw1Htr1cUhX/OYxrAAD/YyhmYnkg8DIfEf+7iw8yJt9LsQM7ArGjrdwIaEFOW4Gujr/4F/xLSKRFQrp8OfZWTH5PWtQfygp+db1cuyWmHFtqyreVQWZ1Cn7KhRxl2MO4BgDwP/bIl6HoIwGXV3fMsi5s3ucg3wMZeY5jB3YEYAcLcnwQMP4C/qVL/uVRQpldvZJ7WOJF0eUt6g9VCH56n90Kz+UeiynHmKe846KEN7XNUdYt+G3LUYarAgAAyuC9NUcCL6/Ny2ELHOS7RLKjx+dhB3bUbAcLcnwQMP4C/qVL/mVXQplfOMhLBaxP0v5orjjBb1yKPeLh8w7IjeJPe4rrQ4NtQ4/6tupkad2CX56Xgt8wrgEAfBGC/qEBA9PvGf79pcO8X2Xk/Qt2YEfNdrAgxwcB4y/gX7rkXzQqcsrDb6ZH8P+KyUf7btseTooT/DZLvncT6njEo07BTzkvLb9jt27BT+TLZ7HTEhfiAkDXeTjgF48HXt6FFr79ksP8r2Tk/QI7sKNGO1iQ44NoK4y/gH/pon+55eE3SxK72th3kwQ/m74Sl056Knfdgt/SBPtXt6VhhCD43ctRDo49AECXWZswadEBfVagZc66Y0bTbof577XIfzV2YEdNdrAgxwfRVhh/Af/SRf9ywvFvpmLspHTnKoU0wU8fS30q+UW/nR7KXbfgp9yVFj/oEoLgdzNHOdYxtgFAh7kt2Tu5l6V3qfg3gZT5loVvX+sw/w0W+f+KHdhRkx0syPFBtBXGX8C/dNG/fB9T1ncVfv9SQn1caWl/SBP8FBVAJySf4KdHn10/4hGC4Pd9gv3ft6FhhCD45QkxRfADgK6yTPLvzOnE6apZgMyvocx6DcNkRhk/idvrGmxeLXuMHdhRgx0syN0vyGkr0NXxF/+Cfwndv8Q93vmoom8vT6mPsZb2hyzBT4yW8imnL/s7Sl85LHcIgp/WXdydki+lBVfKNS3CjyO9ANBVLhRYcMSFpx8SN6/FxbFGwniQ6b3FhHw2dmCHZztYkLtfkNNWoKvjL/4F/xK6f4kT/K5V9O2rkhyx1tY3AWwEP2VfAf/1H4flDkHwS9Ok9ja9YYQg+P1HeLSjbehOqF6S+sJMbmzQCZDugupxiMfGIeuu2ZQZsLWdHJPexZpl0V0KvZPgovQuYP7X5DNlBs27Jq8lAdSlhur/ZiY1Gob90Qzck6asj82gdtj8LX2knSyU/DtyWZM/befrHZd7v0VZbnmov9sW5diKHdjh2Q4W5O4X5LQV6Or4i3/Bv4TuX7bHlPNEBd9dnFIPV1vcH2wFP+VcAd91wlG5QxH89khLH9Zq0iu9/zCuBc1yI5INPn0+nvHvtkTpfk6Ho3cyFHlKXS+tvS7xIbtJ6aL4f7Z9TpR+kd6uYF5n/NEMZrprNkyzbA2/VbjYGEx/RGmlo3JfsezPrrks5e64wQ7scGEHC3L3C3LaCnR1/MW/4F9C9y+7xI0weVLqeUClbvIIfhog8qCAz9rhoNyhCH5pQvG2JjeMugW/BTnK0GZFvomoo9CIslPSO9+e9LslCX4qED4sMUl6LfbRfprXnRJ56d0FizzVq+4uvJP4HWEth0Y6/iV2u82TZjJ0wDh8jgs1E41I/eBwwTGddIJUtUj8h0W+Rz3U4QmLctzADuzwbAcLcvcLctoKdHX8xb/gX0L3Lxdj1jplX7zWfvQ2pR4WI/j9P3Oj9Cqnr1J/WPWjRKEIfso/CXY/QPArzt4cZdjDuFY7Gummr9VczTEBGk/43Sel/ARJI+Cy7nXUSLmpCvJ6bRyjK1SMuxaTrx7jPRgj1qngqtGRjxxMPCEsDntYbPRfllzl5eI2/dzHC1i7LPs4dmCHTztYkLtfkNNWoKvjL/4F/xK6f3ku1R9/3p5SB29b3h/yCn5ixLu8mxoa6FPlIx4hCX7XUuxe2tSGUbfgZxvhNSX+j1XCDLpb8mfBCcyg4He+4glSkuI+T4qFKqelm47q9+sE4U7r3EZkPILg12o0jFzvZ7ljfKZGgH50uOh4U9GgNmqZn497ZbaL3b1KQ9iBHZ7sYEHufkFOW4Gujr/4F/xL6P5lhbh5PTetTVxH8CvcfgbT3ZYKfj+n2HwcwS8/3+bI/zxjWhAORF8Y07soNAT7r5yCn37jlnwp5KqIpq8F6UtX02HcQ2YgOCl2R1d3DZR3uXx+/51O0M4ahzavb8AbMn97IIc9VfeF2Qli31vJ9yp1lbvQ0Jx++Y1p18fNgmSqojYwUcGiY71lXmMe6mqzZVmWYQd2eLKDBbn7BTltBbo6/uJf8C+h+5fBl68fV/DN4Yx+eKIDfqmI4KccLeCrqhLAQhL8tkn6FV8IfjkYMuKRbXTfIoE60d8r7lLhs5aCnzqguwMdZr/Y3Sm3TrJDjftfz1kjM3fgqVioD4mMWtp53MKe+xXXbdIT4AcLfKvMPYUIfu3pq+qvz0jyPRRVHpkvOmj2p3Ue6qXMxBw7sKMJCz4W5LQVYPzFv+BfmuBflsvnAR2fpJrHa7Zm2L+z5f2hjOBn059cPWYRkuCX9b7E6iY2jLoEv5M58q76stON4u8+jrrTDQ+OJUuMu9AnROkxiEOSP6R8t2UbXSMzrz5rhNzaAjaNW+S1pKL6O5AyQRkp8L3Fkh0R6XN3gr5W/+JDB+IyR9t1x7XoBcrfW+bh4zGZOZZl2YEd2OHJDhbk7hfkXW4rjL/dHn/xL/iXqvzL9P3tGuShwQgbKijv4MmmnyuqhzMBiK9NFvy0rT7N6ae0j5WNHA1J8JOMtfQxBD87fsyR7+9S/X0DTIKq5bplWXS3s8yrPs8k+y6/6cg+/c8VBfP5SrLvZzlUQb3N7RMnq3yR2uaOxA2e/At9LRx0R+peQdsuF8xzj+X3RzzYP8uyLLuxAzs82cGC3P2CvMtthfG32+Mv/gX/UoV/Wdq3tupPr6T4Y5qnKlzzDPJnAL9FkwU/ZaH0rhXI46deSLlHPEIT/F5K+kYMgl8KQzGdPCsSycWrqEyCquW0RTneSy98uww/Wdr8qQJB62JGHrcrqLffUr6/t8R3l1rU0TiCX+cWHNNsNb41r31FXpmz9fc+LpEesSzLr9iBHZ7sYEHufkHe5bbC+Nvt8Rf/gn+pwr9krfHu5Vyr/xTTd4cqrIO0yKzJDvSHKgQ/MevoTzn9VJm1cWiC380MnaFxkde+BL9Vku+VV1WKXT1NzySoWn6wKEcVL1QttbT5SAV57cjI42PJ7+ulsmlHobeU/H7WTvJrBL/OLjgUvdPyXE77dIc37+7duOW3QxrvzmEHdniygwW5+wV5l9sK42+3x1/8C/6lCv9yxeKbuqbIukJpOEY8PON5zfG6A/2hKsFP2VfAFx+r8LerU/C7lGHnlqY1DJeC35BpZHdzNhY9xjvXoc1Mgqpll8fBbjIjn6cV5bPIwqYFJb6/U9wK7DYirI/LoOlrYbNVko+VV7Ez3MTJ8Dh2YIcnO1iQsyB32VYYf7s9/uJf8C9V+Jc8oo+ejloeI/TpMeL+a5lUwP7Ogf1ZR6xvIfjlJu/mRNEgn9AEvxPi932JYAQ/jZr6VnqXOY4kNLDlRvHUcN1rkv2YQ1w6I+5Dn5kENVfweyjuj9pOkxXKXMaBZh0ZLuvk5lr8Jts8tA36WvjoXZe2d3XkfUwGgQk7sAPBjwU5gh/jr//xF/+Cf6nCv+ia/E7O/vjGrMf0rrMp+fwo5BlxF9STFZV1DcEvN/r75314SPvc0oYLflmPhV5vq+DnOr30+MMyCWqu4Jf1QEiVgt/7jLzK7E49cSz4KVlH6PfS11hwGJbmWHTsQvDDDuxA8GNBjuDH+Bv0+It/wb9U6V8OSf6HHPqv6dKIqAWO7b8l2RGICH75UYH2VYHffE6DBb+sq70adzy87kFaK+wnYdeqyfgU/LJ2b6oU/B5l5HWwxLezjiaPVVD+rCjCczRd6EPvX7G5oDfPa2o2L0Y3YTKMHdiB4NfMBTltBbo6/uJf8C9V+5chsz7Ru/j0UQMVAD+aNY0mPdn3j/SEtwtmfbjMo/1ZolQX1j0uBD9lheQ/uZnnCHVogt8WyX4gdKhJDaMOke+DGbS2N62yIBafgp+P13OnyQphP1vwu8MW9VXFIydZ9/ixqIBBDlv6b1vONnAyfBY7sMOTHSzI3S/IaSvQ1fEX/4J/6Zp/yQqmONWB/uBK8BOj27h6xCM0wW/MwrYlTWoYtj/YQyOA6HPyetTx40DH+mT+/4/mf39j/l4dsUZlHTENZalA2/Ap+GWFz1cp+N0WN4LZiPg5trFFEPwgP39VOMjtbeBk+Ch2YIcnO1iQu1+Q01agq+Mv/gX/0iX/MmRh+54O9AeXgp+Y9pNX9LPJPzTBb4OFXWNNahguX+mFboDgV94ZD6bzFZR/dUYeJ2i6EMMWi/a5rULf8F/xc6XDiGVZdmMHdniygwW5+wU5bQW6Ov7iX/AvXfIvo/jWxHaw2XOfG0waCJa1URGa4Dffwq7tTWoYCH7gY8CrijYIfkrWXS13Kij/HOHyZyjG84omTbbh/6OBTAY17cAO7PBkBwty9wty2gp0dfzFv+BfuuRfvhI/p6dCx4fgNztKTyWf6PfC/LskQhP8ZlvY9H2TGgaCH5QFwS8/LzO+rUfjy95vOSsjj000XUgg6y4h23tQbO7A0OTjqoe5lmUZww7s8GQHC3L3C3LaCnR1/MW/4F+65F/WCYKf4kPwUxZK/lebb6Z8r4mC3w9NahgIflAWBL/8XLWosw0OnZVGGA7TdCGBZRW1fZsdV1/i8wbLsizGDuzwZAcLcvcLctoKdHX8xb/gX7rkXzYKgp/iS/CbbnOfJJ/o90uO369O7ckmYrZRd0Ii+EFZEPzys9uizs6ULP+KlG/fo9lCBm8ravs2k4EtHuyxuRtJyzqEHdjh0Q4W5G4X5LQV6PL4i3/Bv3TFv9gIngh+1bNP8gl+SeUJTfCzuRPz1yY1DAQ/KAuCX3505+CjxSRldok80u4W4Q4YKDOJztP2bV4d3OnBnh0W5XiFHdjh2Q4W5O4X5LQV6Or4i3/Bv3TFvywXBL8koWqz4zzPST7B7518+YhHaILfLCHCD+AzEPyKcUKKhz7bcDrhm38LEQRQrq+dzfEdm+Pr+z3Ys8eiHNexAzs828GC3P2CnLYCXR1/8S/4l674F5s713il1w26pnwg+US/Z/J5UAt3+DkGwQ/KguBX3Jm8tpioLCjofF9JC54Rh9o4kNIuf8zxnaMW/sFHxMK4RTmOYQd2eLaDBbn7BTltBbo6/uJf8C9d8S/D0rKIrILUIfgpc1PWnUnpRt+/55VexyD4QVkQ/IrzrWQf7b1f4Lt7E751ieYKFfTr73J8x+ZemasBLAqy7tnBDuxwYQcLcvcLctoKdHX8xb/gX7rkX7LuU+xCdGxdgp+id8d/kHyi38/m34Ym+Nk8yNOoABoEP3A5MUHwy2ZMskW/izm+py9wvY/5xl0zEACU7dd5Jg82u2RPPNjzWLIvsx7FDuzwbAcLcvcLctoKdHX8xb/gX7rkXyYy6uB8B/rDSM0+Y7vkf8RjTMIT/NZZlrsxdFHw21igMTY13ah5YoLgZ8fqKP1jYdvcjO/o7sobiY/sG6GvNb6v+eSHFFvn5fzW04y6m/Rgz2QFE3LswA4XdrAgd08X2wrjL+Mv/gX/0qWxKGvddrEDdVC34Kccy+m/9RGPvYFpT5ssyr0EwQ/BD8EPwS8vX0fpmsXE5aT0dh5G+py7PkevryR9ivn7PfQ1FhwFOFHh5PmURf0tdmjLYov8T2AHdtRkBwty93SxrTD+Mv7iX/AvXRqLLmXUwTUEP2/czOnDPwamPWUd1df1dqMewETwYxKE4BeG4DeNOubnFfz2+hrXAvoaC46CXJXqXnlbb1F/Lu/C2GGR/xrswI6a7GBB7p4uthXGX8Zf/Av+pUtj0cGMOriD4OcNPer+VMr59Tq1p6w+NdG0hoHgxyQIwS8swU9ZKtnh+XFpKkqXpXe0l77GgqMMLxLs3FfgW7oL9jaj/k46tOV0Rt5vsAM7arSDBbl7uthWGH8Zf/Ev+JcujUWbqYdgBD9loUW/CFV72t22MQfBj0kQgl9Ygt8qmbl4Vh3lUeOsd0bpsPRC1q+b8t02v7EO9rp7OIu+xoKjAuZLcgh70fuDzmTU3wOH9vxR4UQcO7DDhR0syN3TtbbC+Mv4i3/Bv3RpLBqV+u9SrJtZAQl+ygbJfj05RO0p6x7CUwh+CH4Ifgh+RRkzkxP9/hXpPQtOX6Ov+ebHBBvvlvjmSsm+D8PFwzKzLSYby7EDO2q2gwW5e7rWVhh/GX/xL/iXro1FzzLqYqTl9se9Gr215jLta6Dgl3Uf5A4EP0QIBD8EvyIc6fv2YfoafS3ACdP6kt99klGH2xzYsjMjz9+xAzsCsYMFuXu61FYYfxl/8S/4l66NRecz6mNDy+2f46nd5eVCwwS/rEdH5iP4QddA8CuH7jZd6fvuzzQpqJFtCe39fgXfzroT41INi4Ht2IEdgdjBgtw9tBXo6viLf8G/dIHtGfWxs+X2r46x+bsAyjUsPfG5KYLf3ynletnEhoHgB2VB8CuO3jdxT4gKgTDQi6fjogv0uMjyir7/OqVPfZRqj1t8Lb2HbJLye44d2BGQHSzI/fg42gp0cfzFv+BfusCsjDo50XL7x2JsPhBI2eZG6ZWErz0NSfox+XNNHFxsK30TYwokgOBXvP/dFXb6IRsVhteZwdIlSZfUHqkwj6y7PKp8hfBQRl7fYQd2BGaHDQuidNZMnPUScn3cSY8xLWZBTlsBxl/8C/6l4/4lbf12o+W27xT3V1CVYYX0hO+QBb8l0jJNbFTsBb8tjPmQgE/BL+sOgEcV5nVX3Ap+p2K+eYzmBH3skS93iyfNhKXqV7fWiXsRXVGh+09xvyM9LOk7iY+wAzsCtCOLtVF6l7KwDfE0xq3AFuRdaSvA+It/wb90kbSj1W9bbvtRCV/k3CFhC37bM/zJUNMaxTqxF/x2MfZDyqTIl+CX9WrOuwrzep2R14US314m6RfsHjQTygVmUIfusdOiX+mkcnUFeS2K0kTM9/UC6tkObNPX7NLC5X+oII+0nW897rEcO7AjUDuSmJ+yGO+fjIYWifM8sAV5F9oKMP7iX/AvXWVU0o/1Lmix7ddj7P0QYDl/lXAFv+Pi78FOL2wXe8HvggDEMy7+BL9rkv3sfVXK+2RGXldKfPuU+Hu9bso4+8dRuiy9EP9Rmm3w3M3xGx8tkY9OfOJ2iZ+K2yNMP6bYo4ufr0suXP5N+f6P2IEdgdsRx1lLf3ApID82mrHwrXrcpq0A4y/+Bf8CaSfC2vpwx3DK2nVNgOXNegm3LsEv7Uj4miY2jDyiwwt8ByRwx6L9zKsor4cWeVWx4zrfIp8yD2xcF3+CX9LFwXpx7Wyab7C8z/mb3ivQz9ZIfGTBgyh95cHGiyn23Cr4TZ3Y3xe/m1fYgR0+NkXf5PDvobDHsswbaipfW9sKMP7iX/AvXWZVSh1dbKnN+1Nsvh5geXUN+peEJfhp/0oSTf9sasN4kXNA24z/gAGyXoiq8uLYYcu8qniB6YDYRc7NKfj9X6VewW86vTKDIoTHkwK/5zsz4NsMshqyHrczPi5+j5GnRe2eL/C9qzVNeLADO1wzlcMXjATgw9TPvLQs739qLGcb2wow/uJf8C9d54+EevqnhbZ+I737CdP6wf4Ay70opdx1CH5rxe1RfO+cLDCYTSAOwACXLNuOquKzSub1o2Veenx1RYl8lpjBwCavswXzmJsjD9dJjwWsoykHx5ESv+kL8++1H0wfZdH+p48vnZH4oyA64O6oydYzGRNYm2gHja6466CvYgd21G3HNO8s+39dR9gG6+1BTr91tsZyt62tAOMv/gX/0nW2ptTXypbYONv4mw+W/eCKWeeGxAaJ3wCpQ/BLei39tQT+WMewGWhUqNsmvciivJF9cUcZj5iOtMJ8n4cFusOoaUu/52w3Kvp9L/mOKgyZtpu0G5p1ZHWVZQednozpbttUTrvumL6QV9BcKHZHlH2kd6Y8EJbvfuDht9d+dUrqOULUj0YBJx2jemvGnLg2qheIH035t/8av4Md2NFkO5SLEnY0y1dmHD2bY/ExmP429b5J/EcRtamtAOMv/gX/Ar37MOPq7XhD7dE1rV4HsFd60aNTBfuC+refpBfRFoKQtT8QwS+pvRwMuVHs8iwajONXWovuPE6UGGTjBDkd4C6n5PU+p8iXNqFSQSsuhHujpF98WySv9zkHEp0EPJf6Rb9bNPPgUBH5vLiL7NRI70UB2at3Z16yKPd9k7L6rh59WYAd2NESO5aYsTNrDPIVubDWjKs6vk468lOTfeP3DtoKMP7iX/Av+JccbJPkiK2mcUPcbTycDsC+izULfiskeaMg6Og+BD8IvS3d9txuB9nsKJ8iofXTEZMagfukIrEzb1pJUw+SFWYgnCr5+34wE0QVmUOOyl4WpXNSTIz/aBZp32AHdrTQjjFJ3njTMm73WJaNnsenXbQVYPzFv+Bf8C85eZRQl1saZsftlms4w/L56UHfgt/phLrZThcCgLLM63NwE/L5S29LzYCkE5GTZtJ53Th9DTt+ayYMOgGY7EtFxcLT/BxBM2zag0aQaii/CsPvB357bQvvzATnhpkYfifl7rWsC91R22TsVVtemMXItK36f780/9sJ87dD2IEdLbdjsenXE6a8E2ayvkSAtgKMv/gX/Av0szJhzXOfqgkOveP+b9P+fb6uPUfiNzvu8ZMAQFlWy8zjHSrSrXeQh95TssBMFHSXQu/x1HsH43ar/+QnAQAAAACAljAu8aLft1QNSO+ezLio7MVUDQCUQR/66L8v5SfP+esFyCfky3scAAAAAAAA2sDX0otWjXu8ArqNRhXGRfftp2oAoAx7JYxXz5TDA2UZ4ecBAAAAAICWsFXio/y2UjWdJi768zbVAgBlOChfhgzX+cqW3gfSv+uF4AcAAAAAAG0iTtzRO+NmUzWdZG1Me3glvYhQAIBCfB/jWI4FUK6bwpFeAAAAAABoJ6PSe/RwcC12lqrpHCry/i1fvoK9gqoBgKKoA5mMGWTmB1C2acHvGT8TAAAAAAC0EH2I4W3MemwjVdMprsS0gS1UCwAURY/N/hXjWN4EUr7npjzj/FQAAAAAANBS1kdpamBNptcbzaNqOsH+mDX5HqoFAMqwW+Ivir0bQNmW9JVnHT8VAAAAAAC0mJ0x67I/ojRM1bSaDdK7wqr/dz9EtQBAWR5KvOA3EUDZLpiyPOFnAgAAAACADrAvZm12lWppLcuj9G7g9/6JagGAsuirt58kXvDT9E2NZdveV471/FQAAAAAANAR9saszY5TLa1jUZT+EY7xAoADVkqy2KfpXk3l2ioz91dwdx8AAAAAAHSN74Rjnm1mofTuze9/jXcr1QIAVfGNpAt+mi5K72EPH+gz5Kf78n4UpVn8TAAAAAAA0EH0brfB454/Ui2NR8W+132/qUb5raJaAKBKVMgbfAkqLj2O0gqH5RiV3m5VfzjzsyjN5ScCAAAAAIAOszRKzwfWZ4eplsayfGDd+4B1LwC44rJkC37T6XaUxqSaiD99aWqb9B7m+ChfCow4PQAAAAAAgN5JqEsDa6aTVEvj0Lvp+yM2j1ElAOCSxfKl4JaV9O+vR+kX6Yl2a6UXpTf4XPyw+e9XS+8+gt3SOyL8uyQ/FnJFOMYLAAAAAAAwyE75XDDS13tHqJZGsEtmTte9Eh6mBACPA8d/a04fpPcaFQAAAAAAAMQzT3pCn66h/o3SEqokePSE3DPzm52TXsQmAIA3VPSblHrEPj0qvJifAAAAAAAAwAp90GML1dAYNkrvZBwAQC3oBaJ/ij+hT+/q20S1AwAAAAAAAAAAuOWHKL0QNyKf3t2nEX3cWQAAAAAAAAAAAOCZzVG6JuWP+urlpCry7ZPenRMAAAAAAAAAAABQI3rJqN45cChKl6N0N0pvpfda72Rfeh+lp1G6EaVx6UUKrjH/HgAAAAAAAABayv8BzLOHJ/mM4qkAAAESdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPlA8L21pPjxtbz49PC9tbz48bWk+bWc8L21pPjxtbz49PC9tbz48bW4+NTAwMDA8L21uPjxtbz4uPC9tbz48bW4+MTA8L21uPjxtbz49PC9tbz48bW4+NTwvbW4+PG1vPi48L21vPjxtc3VwPjxtbj4xMDwvbW4+PG1uPjU8L21uPjwvbXN1cD48bWZlbmNlZD48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+TjwvbWk+PC9tZmVuY2VkPjwvbWF0aD7JfcF3AAAAAElFTkSuQmCC" style="width height margin-left margin-top transform rotate translateZ0px; -webkit-transform rotate translateZ0px;" title="straight P equals mg equals equals to the power of 5 open parentheses straight N close parentheses"> Lực hấp dẫn giữa hai xe F hd = G m . m r 2 = 6 , 67 . 10 - 11 5 . 10 4 . 5 . 10 4 10 2 = 1 , 7 . 10 - 3 N " src="dataimage/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABdwAAAHLCAYAAADSqVpUAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAADapiKpVAAASERJREFUeNrs3Q/kVef/APBHkiQxk5nJyGQmGZPJzESSJIlJJjPxNZnJRGYymZGZTGZMMplEkiQzZjKTiZnMZGJmZiaRJEliv+dxb79ut3PO/Xf+3Hvu68Xbvt/tc8/znOec597zvM85zxMCQLWejbEvxk8xvh7wt8/EeDvGiRhXYtyJca/7z8sxjsR4acx6vBbjkxjfxbjZ3e7dGP/EOBXjjRgLtL/2BwAAAACYJqtjHIjxS4z/euJ8zt+viXE2xv2+v8+LlBBeOkQ9FsbYG+PPIbf7e4y12l/7AwAAAAA0ZVGMbTGOhuLkan/CNyVkPw3DJWP7Iz1x/URBnTaH4RO9vZGe5n5V+2t/AAAAAIA6rYvxQxj+yejehO9ToTPNyX8TRNYT24tDJ/E8yXavdeun/bU/AAAAAEAtdsX4NXQSrF+EwQncBwna50Jn7u4H//5qjEMxtsRY1v2bNJ93ml7kzIBtvt5Tn+U9dUhJ6DRn+fbuv38wP3h6GnxrjNMDtntU+2t/AAAAAIC6LMn4d0WJ1JTwfT50nmBO//9i6CymOciRUDy1SbIiPJzCJCV9Vw6x3bcKtnu/u03tr/0BAAAAABqRnorOS6KmhGxK9t6LsXuEbaano68WbHdnePjEdlr8c9EI2z5WsN392l/7AwAAAAA0JSVnB80pvnGM7b4TBs/9neYzXzjidlcN2J721/4AAAAAAI25FfKTqO+Nuc0VobqFNn/P2WZ6EnyB9tf+AAAAAABNuR7yE7NLJ9huUSL57Qm2e7Jgu2u1v/YHAAAAAGhKVQnfbwq2u2OC7X5csN1t2l/7AwAAAAA0paqE76lQTcL3zYLtvqn9tT8AAAAAQFOqSvh+HapJ+O4o2O5n2l/7AwAAAAA0paqE7/FQf8L3S+2v/QEAAAAAmtKmhO9R7a/9AQAAAACaIuGr/ee5/QEAAAAASiPhq/3nuf0BAAAAAEoj4av957n9AQAAAABKI+Gr/ee5/QEAAAAASiPhq/3nuf0BAAAAAEoj4av957n9AQAAAABKI+Gr/ee5/QEAAAAASiPhq/3nuf0BAAAAAEoj4av957n9AQAAAABKI+Gr/ee5/QEAAAAASiPhq/3nuf0BAAAAAEoj4av957n9AQAAAABKI+Gr/ee5/QEAAAAASiPhq/3nuf0BAAAAAEoj4av957n9AQAAAABKI+Gb7YkYn8b4N8a9GFdj7Nf+Eu4AAAAAAHmaSPjunGC7b4TqE77LY1zJKeMb7S/hDgAAAACQ5XaoJuF7smC7eyfY7v8KtvtVSW1yuqCMFPu1f6XtDwAAAAAwc1JCtyix/PwE2z5fsN2vJ9jusYLtnimhTRbFuD+gXa5q/8raHwAAAABgJu0KxQnfNybY9q2C7aZ50ReMud2rBdu9XkKbrBnQJinua//K2h8AAAAAYOY8GeP3UJzwvRxj8Rjb3hEGJ60/GWO7+4fY7gcTtsuiIcq4pv0ra38AAAAAgKn3bIz1MbbG+Dh0nnL+b4j4I8b7MbbEeC3GM33bTQnq1TE2xng9dKYcuTfktn+KsSfG5u62l/RtO213W7e+vw25zRTfxdjdrfOGGE+M2FbnBmz/kPavtP0BAAAAAKZa0SKao8T5vu1uLmm7Kbb1bft8RdsdJCW1/8nZ1o9hvKfOtT8AAAAAAHNpeYwjoTMv+d3Qmbv8QIyFmgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPM/E2B7jUIyTMb6PcSPG7dBZJPN+95+3QmfBzHMxjsfYE2NTjEVDlrMvxn8xvtbkAAAAADBd/puhuOVwMWVejfFZjD9KOL9TQv5S6CTs18dYkFHe6zHudf/+pOYHAAAAgOkySwn3Ow4XU2BxjL2h85R61ef7mRhHu3Gx77+fcSgAAAAAYLpsi7EjxlsxjsX4LUxvwv2ew0WD0hPn78W4PsS5+kuMT0NnipnVoZOk793OktB5Ov6N0JlW5toY/eG8QwIAAAAA029z6DxdO+w0GOnJ2zQf9ZkRIv19Shh+GzrzXN8dsjxowroYV8LgKY8+ifHcmGVsjHEhDJ9w/8ZhAQAAAIDZ8GEYLtm+psQy01O/W2IcDPlzYi9waJjCvpCeZn+ipPJeC8NNV/OHQwMAAAAAs+H5MDjh90OF5afE+qcZZS5yaKhJugF0dkAf+CvG2grKTlPQHB9Q9nWHCAAAAABmx6BpXk7VUIdTfWUudVioQXpa/WIYfMNpecX1KHq6/pbDBAAAAACz4+9QnHA8WUMdng2dqWselPm0w0LFUrL90oBzP609sLim+hzOqcMdhwoAAAAAZkdKKjadcE/O9ZT5qsNChdJURj8MOO9/Cp3pZur0XcheQwEAAAAAmBHnw3Qk3Hf2lLnBYaFCRwec89diPNVAvdLUNdcz6gMAAAAAzIhpSbg/1VPmJoeFirweBi8U3OT5tytYRBgAAAAAZta0JNyTa90yNzssVCDvCfLeODMF9fypr05LHDoAAAAAmA3TlHBPc7fvCBZNpRpfDjjX03zpz01BPdf11WuFQwcAAAAAs2GaEu5QlefD4KlkzkxRfS/01Os1hw8AAAAAZoOEO/PgeBiccJ+mxPZrPfXa6PABAAAAwGyQcKft0hRF9wec5/9MYb1/DdY0AAAAAICZIuFO2+0Pg59u/0IzAQAAAACTaiLh/mp32+c1PzX4JQxOuG/TTAAAAADApJpIuO8IEu7U4+kwONmeYpmmAgAAAAAm1UTC/fMg4U49doXByfY/NBMAAAAAUIYmEu6/BQl36nE8DE64W6cAAAAAAChF3Qn3F3q2LeFO1S6FwQn3w5oJAAAAAChD3Qn3s0HCnfrcDYMT7rs0EwAAAABQhroS7gtifNq3bQn3av0343F9wv1fMmQ5W50qAAAAAEAZqkq4L4yxKsa2GIdi/JWxbQn3as17wn3dkOVsdKoAAAAAAGUYlHCvMiTcqzXvCffNQ5bzWg3H4pXQWcC1zPjMKQ4AAAAA00XCvb3mPeG+bchyltVwLHZV0D7/OMUBAAAAYLpIuLeXhPtw5Syt6XgsivFijNdjHInxx4jtcT/G1zG2x1gZOusiAAAAAABTpMo53FfE2BLjQIzLQcKdek1bwj3L7iHreDPGaocUAAAAAKZbVQn3LP8LEu7UZ2sYLpn9VMP1PDtEHT+esIz/hJiTAAAAAGhUnQn35HCQcKcem8JwCbr1Dddz5xB13DxhGRKxQsIdAAAAoAZ1J9zT08T3g4Q71Xs+DJeg29RwPV8eoo7LJyxDIlZIuAMAAADUoO6Ee3IhSLhTvUVhuATdjobruXiIOi6csAyJWCHhDgAAAFCDJhLuHwcJd+pxKwxO0L3fcB0XhOqTiBKxQsIdAAAAoAZNJNy3Bwl36nEuDE7QnZiCekoiAgAAAEALNJFwfzVIuFOPQ2FwMvvKFNRTwh0AAAAAWqCJhDvUZXMYbhqKZQ3XU8IdAAAAAFpAwp02S4uN3guDE9rbG66nhDsAAAAAtICEO213JgxOaB9vuI4S7gAAAADQAhLutN3WMDihfSfGogbrKOEOAAAAAC0g4d5e/814XC+xLf4corw9U3ysAAAAAIAZIOHeXhLuD+0Zorzfp/hYAQAAAAAzQMK9vSTcH1oQ4+oQZb41pccKAAAAAJgBEu7tJeH+qI1DlPlvjCem8FgBAAAAADNAwr29JNwfd3SIck9M4bECAAAAAGaAhDvzZHGMX8PgBPfumusl4Q4AAAAALfBtKE70ndJEtMwzoTN1TNF5fz90pqCpi4Q7AAAAALTAjVCc6DuniWih52NcG3Du34mxoab6SLgDAAAAQAvcC8WJvt9mcJ+Wz/DxWBo6055QvZUx/hxw/qf+saviejwZJNwBAAAAYOY9GwYn+lLCccEM7MurMT6L8XeMMzN2HJbFeCPG2W57b3Zq1ibdnPl+iH7wVfc4VeFQkHAHAAAAgJm3JwxO9KXYNIV1XxhjW4xjMa731XcWEu4vxNgX40LozBfeW38J9/p9kHEc+iPN+/6/UO4NqI+G6H9XHB4AAAAAmG7pad0/wnAJ959jLJqSeq8OnXnli6bCmdaEe7pJkJ6U/mtAe0u4NyPN635hiP6Qjt/7ofOGyDhSwj5NU3MlDF649ZNgiiEAAAAAmFopSZie0h022d47l/tbMVY0XP+XQuep4KMxLofZSrgv7tb74xhfx7gVJNynUXqj46ch+0U6B7+IsSN0FlhdEh59Aj797zRH+8YYb8c4GePmENs9EWOVQwEAAAAA0yU9mZ6mwrgRBi+QOmzc624vbfeVhvfv5zA7Cfd+G4OE+zRL5/ZXJfabQZH6U5rPfaWmBwAAAIDplBLuVSYJNzS8f5+F2U24p6efs+YNl3CfLump9Z2h83T6rRL7Tjr2P4bOGw+vaWYAAAAAoGm7w+wm3JOsBK6E+3RLC96mBHyaSuZ06Ew/k974uBPjbk/c7v77NO1MWncgTSOUnmBP08+sDeUuvgoAAAAAMDEJdwAAAAAAKIGEOwAAAAAAlEDCHQAAAAAASiDhDgAAAAAAJZBwBwAAAACAEki4AwAAAABACSTcAQAAAACgBKMk3BfEWB9jV4y93c++HmNFBfVaFmNrjDdj7Ov+c323Dr0k3IGFMXbEOB7jcow7Me7HuBvjRoyzMQ7EWKWpAAAAAKjSMAn3lPz+KHQSV//lxPkYK0uoz4YY34VOsiyrnOsxDsZY2v17CXeYb+nm37WC76b+OFfSdxUAAAAAPGZQwn1djL/DcImslJB/ccx6PBnjVM+20pOpx0LnqdWUQN8SOk+oXu3+939ivBYk3GFePRHjQhg+0d4b6Qn47ZoQAAAAgLIVJdzTlC53u//u99CZruFQjKMxfgvZiaw/YywasQ4rup97sI0fYzyT87dpSpmPev72XpBwh3mT3nC5HMZLtvfGTk0JAAAAQJnyEu5papeUzP4rdJ4uz7I/ZCex9o5Q/tOh87T6g8/+EGPxEJ97L+Qn0STcod3OhsmT7Q9u2L2oOQEAAAAoS1bCPT05ejN0kt/LB3z+dMbnfxmy7EXh0adU0/QwT49Q92+ChDvM+3fWxdBZVPm58HBR5fTd8lLo3Ji7EoqT7pc1KQAAAABlyUq4P0hiLR3i8+tyPr9siM9+1veZD0as+2tBwh3myZLQWTj5wdPpbw75uT3h4fRYWbFF0wIAAABQhqyE+x+hsyDhsLISWYOS3qvD41M7LBux7ulp1vtBwh3mxfs9/XzURU/Xh+w1H1Kc1LQAAAAAlKFo0dRhXQqjL0Z4dsIyH7gVJNxhXvzV7eNHxvz8+yE74X5H0wIAAABQhjIS7ucztlE01cOKjL/fM2b9JdxhPrzS7d//huGmu8qyoPv5cafBAgAAAIBCZSTcz2RsY3fB3+/L+PtNY9Zfwh3mwyfd/v3uhNv5LGQn3NdrYgAAAAAm1UTC/duMv39izPpLuMN8+CnGtRiLJtzO9iDhDgAAAEBFmki4Zy2yumDM+ku4Q/s9WCD5YAnbWhOyE+5Pa2YAAAAAJlV3wv3ZkJ3sGpeEO8yHDTGeKWE7SzO+M+5pXgAAAADKUHfCfVOQcAeak5Vw/1GzAAAAAFCGuhPuW0N2wt2UMkAdXsz4zjioWQAAAAAoQ90J922h3PmTJdyBUWR9B63SLAAAAACUoe6E+5aQnXAfN0ku4Q6MYn8wnQwAAAAAFak74f5yyE647x2z/hLuwCTfVxs1CQAAAABlqTvhvihkJ9zPjVl/CXdgWAtj3Ov5rrioSQAAAAAoU90J9+TXjL9PSbBlY9Rfwh0Y1pt93xVrNAkAAAAAZWoi4f5pyH7Kfd8Y9ZdwB4b1c8/3xKeaAwAAAICylZFwPxtGS7ivCdkJ92th9KfcsxLuWxxWoM+mnu+I30JneisAAAAAKNX/wuMJ67MjbuN8GC3hnnwTspPuJ0Yod2XONnY4rECPBaGTZE/fD7djrNIkAAAAAFThi/B4wvrHEbdxMWMbXwz4zPMx7obshPnHQ5S5JKfcFF87rECPD3q+H7ZrDgAAAACqcio8nrC+M+I2shLnwzypnvV0/YNIT80/l/O5lKy/FONG6Cy2mvf5/aHzpP1zDjPMrdU93xMHNAcAAAAAVUlPiV8P2QnrYRce3ZLz+X9jLB3i8wdCftI9xQ8xjsb4vPvPCzHuh85NgQ0hew733kiLJK5zqGEupe+g37vfBUc1BwAAAABVeCLGrhiXQ36iOiWyUzJ8dc420r//IBQnvK/EeKtbXpFdYXDivD+Z/2r3s1mfS0+/74vxrEMNc+1cGG8haAAAAAAYyhth+MR23hQzd8bYxqCnzJ+O8WmMmwXbSE/jHwqPJvAfJNzTfO7vxVjhEAOhsxZE+m74PsZCzQEAAADAvHo5xo7QmX89RbpJkJ5oX5Dxt+nvntFkQI894eGUUks1BwAAAAAAjC7dhEvJ9jR3+3LNAQAAAADArEhJ7TSdU1qzYUPO3yyLsT/Gj6EzJdW9GH+EzjRST5RYl03dbf8TvPkCAAAAAMAMSNM7bY5xNsb98HCdhc0Zf7sldBY6zlub4bdQzrQvaZ2IlMxPaz284BABAAAAADDNUlL7SIwbITt53p9w3xOGW1T5wIT1Wt2t0+3QWQNiEhZYBQAAAACgEi/F+DjGn2Fw4rw34f5WGC7ZnuLcBPV7NnSeoE9TyWyccF/Tk/vpifu1DjsAAAAAAGV5NXTmWf9vhHiQcN8w4ue+GbOOT8X4q7uNHSXs8ycx/nboAQAAAAAo0ysx3o7xWownY2wNg59yTwn39MT5gylnvgydaWjSE+PfFXzu5Bj1S4ut/tr9/Nsl7O+u7rY+dOgBAAAAAKjai6E44b4txuXQmd5lW8bnD+d8btSpYJbEuBgmT5CnKWTSjYWjPXVZ6TADAAAAAFCHayE/4f5b959vFHw+PSl/Kcb90JmyZteI5adFTb8No01ZM2xccHgBAAAAAKhLWuC0KGn9ecXlnw7VJNtTvOXwAgAAAABQlzMhP2F9PcbSCsv+MlSXbL8dY5HDCwAAAABAXdICp3lJ60MVlnswVJdsT/GFQwsAAAAAQJ2KEu7bKipzXag22Z5irUMLAAAAAECdihLumzUPAAAAAAAMR8IdAAAAAABKIOEOAAAAAAAlkHAHAAAAAIASSLgDAAAAAEAJJNwBAAAAAKAEEu4AAAAAAFACCXcAAAAAACiBhDsAAAAAAJRAwh0AAAAAAEog4Q4AAAAAACWQcAcAAAAAgBJIuAMAAAAAQAkk3AEAAAAAoAQS7gAAAAAAUAIJdwAAAAAAKIGEOwAAAAAAlEDCHQAAAAAASiDhDgAAAAAAJTgd8hPuWzQPAAAAAAAM51zIT7jv0DwAAAAAADCcv0J+wv2I5gEAAAAAgMFWhfxke4qUjF+gmQAAAAAAIN+LMX4NxQn3FF8FSXcAAAAAAPh/S0NnEdSPYvwSBifae+PPGJ/E2BZjY4w1MRZpUgAAAAAA5tHRMFqSfVBs06QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJx7LsadGP/FuKU5QB8EAAAAAEa3IMal0En0SfaBPggAAAAAjOnD8DDRJ9kH+iAAAAAAMIa1Me4HyT7QBwEAAACAsS2O8Xt4NNEn2Qf6IAAAAAAwos/D44k+yT7QBwEAAACAEWwKD5N7d4NkH+iDAAAAAMDInozxb+gk9g7FuB4k+0AfBAAAAABGdjp0knq/xlgYJPtAHwQAAAAARrYrPJzC4oXuv5PsA30QAAAAABjBihg3Qyeht7fn30v2gT4IAAAAAIzgQugk877v+/eSfaAPAgAAAMy1J2JcibFaUzCEfaGTyLsR4+m+/ybZpw+iDwIAAADMpQUxNoZOou+f7v+fF0/GONSNpj0V460YX8f4OXQSZGlO5nvd/30xxrEY20JnUcQmvdCtW0rk7cj475J9+qA+qA8CAAAAzJSU/Pmv5Dg4J223NMaBGLe7+/1dg3V5Kca5GPdHOE7pidaPYixroL4pGfxrtx5f5/zNvCT79EF9UB8EAAAAaIF1ofxEX0o2rWh5uy0KnWkY+pNRTST70pO9X2cch/TU6skYu0LnSdqdMY7E+Dvjb6/F2FpzvQ91y/4r5Ccb5yHZpw/qg/ogAAAAQEucCeUn+863uL3SE6HvhOyEWRPJvpdy6nI6dKa1yNuHvTHuZHzuk5rq/UpPma8W/N08JPv0QX1QHwQAAABogVWh/ERfio0tba/0lOqfA/a9zmRfSpLdyqjDZ0N+Pj1ZfSPj819WXO80BchfYbjkYtuTffqgPqgPAgAAALTE56H8RN9fLWyn7aGzCOUw+19Xsm9tyE70nRtxO+tz9qPKp2yPd8tIc0cPWjCy7ck+fVAf1AcBAAAAWmB56MwvXHay70CL2ig9JfzziPtfR7Lv6dCZ77m/7Jvd4zqqwzn7srOCum8LD+e2fmGIv29zsk8f1Af1QQAAAICW+DCUm+RLyZv0ZOeyFrTNyzF+CJ2FJ0+FToJqSXg4d3TTyb6fcsp+f8ztpWOWNa1FSqw9U2K9UyLyQfJu75CfaXOyTx/UB/VBAAAAgBZIUwj0Pp35oyZ5xNHQSYbmLXj4bWgu2bcvp9zboTMv87jykr9lLr55vrvN70f4TFuTffqgPqgPAgAAALTEnvBoAmWDJhlJ0RO2VSb70jQWt3LKPTLhtleEztPEWdveVELd3+5uKz3FO8oTu21N9umD+qA+CAAAANASv4eHyZPLmmNk20Mzyb7DBeW+XML2v8vZ9q8Tbve50Hn6N21rx4ifbWuyTx/UB/VBAAAAgBbYEh5NnryhSUa2LdSf7EtzL9/LKfNaSWW8XbBfkzxh+2C+6xNjfLaNyT59UB/UBwEAAABaIs0V/SBxclVzjKWJZN/+gjKPl1TGyoIyvh1zmwe6n/87jLeYZxuTffqgPqgPAgAAALRAmvKgN3GyR5OMpYlk368FZe4osZx/Csp5dsRtvRgezkm9fsz6tC3Zpw/qg/ogAAAAQEucDg+TJimps0CTjKXuZN/zBeWlWFViWacKytk/wnYWh4fzlH86QX3aluzTB/VBfRAAAACgBVJCqDdpkuYi/jnGVzF2xVijiYZWd7Jvb0F5d0su672Csi6OsJ3NoThBWUVs0wf1QX1QHwQAAACow+dhcLLkTowzoZNcWq3JctWd7DtdUN4PNe5bmppi2DmgJfv0QX1QHwQAAABopeWh8xTmqMmTNOXFkRivaMJH1J3sux2qX6zxgZUDzontQ25Hsk8f1Af1QQAAAIBW+jBMnkhJcwG/E8w5ndSZ7BuUfDtYcnnp+N4vKO/wkNuR7NMH9UF9EAAAAKB1Fsa4FspLqPwZY+uct2mdyb5tA47Hzgr271ZBeedrbus2LNioD+qD+iAAAABAS+wJ1TzJeDTGojlt0zqTfe8POA5bKti/CwXl1Z1sa0OyTx/UB/VBAAAAgJZI8z9XNX3AxRhPzGGb1pnsOz7gGKyvYP/ODihzYY1t3YZknz6oD+qDAAAAAC2T5gVeHOPZ0Jnbd1eMz2P8EONeGD/hdznGk3PWlnUm+84NaP+nKti/EwPKXFNjW7cp2acP6oP6IAAAAMAcSE9Lpjmhv4pxO4z3lO3iOWqvOpN9lwa0fRVTihwL9U+hkWdekn36oD6oDwIAAAC0UErapTmn/wijJfxOzFEb1Znsuzmg3avwxYAyX6+xrecx2acP6oP6IAAAAEDLpOkv3gmPJ1uK4u05aZs6k313Csq6V9H+HRpwnN+ssa3nOdmnD+qD+iAAAABAy6S5oU+G4ZJ9aSqMZ+egTepM9t0vKOtuRfv3vwHHeXeNbS3Zpw/qg/ogAAAAQOukJyqLnvR8EMfmoC3qTPYVtXVVyb7dA8r9sMa2luzTB/VBfRAAAACgldbFuBGKE0HpadCnWt4O857s+7zGtpbs0wf1QX0QAAAAoLXWhs60FUXJoHdb3gZtn85Csk8f1Af1QX0QAAAAoCY7Q3Ey6HzL97/OZN/dMH3Jvv/pAvqgPqgPAgAAAFCeokUc77R83+tM9t0K9Sf73g7Fyb43nf76oD6oDwIAAABQnmdD8VQLbZ5Dus5k39VQnHirwuEBZb7u9NcH9UF9EAAAAIBynQj5CaFNLd7vOpN950Jx4m1hBfv35YAytzj19UF9UB8EAAAAoFybQ35CaGuL97vOZF/RtCEpllSwf18NKHONU18f1Af1QQAAAADKtSDGvZCdENrW4v2uM9n3SShOvK2rYP9Ohfqf6EUf1Af1QQAAAIC5932Q7Ksy2bczFCfeqpg2pGgKjVtOeX1QH9QHAQAAAKjG8WA6iyqTfetC/Ysn/l5Q3hmnvD6oD+qDAAAAAFQjb7oFCzaWI00Zcr+gvHcr2L+7BeV94pTXB/VBfRAAAACAauwO2UmhlS3e5zqTfcmlgvKOllzWolD8NO9Wp7w+qA/qgwAAAABUIyvZl54GXdDifa472XekoLyzJZe1vqCsdFyXOeX1QX1QHwQAAACgGh+Hx5NCl1u+z3Un+4rKu1FyWbsKyvrJ6a4P6oP6IAAAAADVyVqw8WjL97nuZN/CGPcKyizzidevCsr5wOmuD+qD+iAAAAAA1UlP0vYnhba1fJ/rTvYlp0I9czpfLihnldNdH9QH9UEAAAAAqrE8ZE+vsKDl+91Esm9rQZmflVTGsoIyLjnd9UF9UB8EAAAAoDrvhMeTQp/OwX43kexLCdR/csosa77uHQX79T+nuz6oD+qDAAAAAFTnSng0IXQ7xlNzsN9NJPuSDwvKXVnC9k/mbPt6jEVOd31QH9QHAQAAAKjGrvB4UmjfnOx7U8m+NH3I7ZxyD0y47aUhf1HIA053fVAf1AcBAACA9ktP/KUE0xtzVvYo0tOuL4Vyn458Isa/4dGE0I8V7kMq79NumSkhdTXG/gbbtKlkX3Iwp9y/w2Tzdu/L2W6aD3xZy79Hqj6/9EF9UB8EgOG9GONQjAsxbnWvPe7GuBnjfIwPYjyrmQAAypWSGntCJ8GREhKfz0nZo0hzAffPN/xr6CTJlky47bN9203lVDWNRXqitH/ajAfxTUNtuzM0l+xbHOPPUO4cz4tC/tzUu1v+XVLl+aUP6oP6IAAMb1XoJNn/GyLux/gyuCkNAFCKlGi52nfB9fkclD2K57oXoXkXqOkp1e1jbvtw37audcuryukBF9tNPGVbNI/z1RrKfy2n7JSwW1ri/pyfg++Tqs4vfVAf1AcBYHjpQYW7Ybhke//v/tOaDwBgPJtD5+nQrAutz1tc9jjeGPICNdV94Qjb7U/0pac8q0z0pac+7w9xkV23Hwvqc2/ENh3XuznlnxhxO2tz2vj30JlGpM2qPL/0QX1QHwSAcq+b8iL9Zi7VjAAAw3slxk9hcNKqbWVP4vURLlDTjYQXB2xvRYxv+z73fehMNVGlNWG410nr9OoQdXq3prp8kFP+x0N+/oXQeTq6//N/hPl4UqjK80sf1Af1QQAY7OXw6KLh6aZ6Whj+mZ6/STeg0/otZwp++z/RlAAAg6VET0owXY/xdfciKm/e3M9bVHYZlnbrPsqTIWe6F7IPFnZM/0xP9n/ZdxF8O8bemvZj0RD1vlZju64L2cmx/khttKWmOr0Zsl+/PRWKE3ZpIHMz43NpkLN8Tr5jqjy/9EF9UB8EgGK966JcG/K3e1PoLKTa//t5t7s9AABypGRVenozJZ8W9Pz750L1Se8myy5Tejr/Rpjs9cz+aRo+C/U/dXluQL0OVVBmSjI+H2N99zx4P8YPY7TZpRgfdbexMXSezK3iddfVMX7JOWYnQ2fRxVSHHd32+j1nkHKg75yfB1WeX/qgPqgPAkC+g+HhlDCjXN9sz/nd365JAQDG81doLundZNnjeCrGkfDo07HjJKzS07RPNrQP6XXSf3Lqlp4EreJJlg2hvCRp1lPMVUlPzP4yYn3udM/hZ+f0+6Tq80sf1Af1QQB4XJom5nb3GuOpMT7/cxh/SjcAAPp8E5pLejdZ9iTS06LbunVNyaa/uxe4d7uREj43uxeuJ7sXq9vD9CzYl6ZXSEnL6936pkUa05OgC3WHTGle6PdCZ0qLq33HOh3n9AbHl+HR6UvmWR3nlz6oD+qDAPDQ/u5Y6pUxP5+1jspRzQoAMJ7zobmkd5NlAwAAtMFvMT6d4PNZ08p8qVkBAMYj4Q4AADCb0noqZ8Jk66pszhiXvaNpAQDGI+EOAAAwv7ZljMvWaBZgUmkuzS0x3o1xPMa5GP/GuB/MBandoN0k3AEAAObXu31jsstTUq8FDg3Mlpdi7I1xOnQWrOr9YknJ4p9ifBFjZ4xlmku7tcCTMQ51o2lp1fS3YnwdOgva3Qqdhc/udf/3xRjHQucuuwXkqifhDgAw39fnOLeM/ebb2b4x2YaG65MS7WlB+UsOTaWeifFHjLc1BZNYHzqrLF8Ljyd40pf9qRg7wmTzXmm38XySse26YnPLj9/S7g/V7e7+ftdgXdINm/QWxP0Rjs+NGB8FN3CqJOEOADCf1+dNMPYz9jP2my5p5oJ7PcfhcMP1SVPZ/Naty881nQ/jfqd8UHG97pb4/XcyY/uvdvtd+u8/xFihOzCsxTH2x/gz54RL/35vkGRvst3SncvrDV50tXVesjSlz76Mtm3iois9YfF1Rtvf7X7p7wqdJxrSmxFHYvyd8bfphs9WXbMSEu4AAPN1fd4UYz9jP2O/6XOkp+1PNFyX98PDmzTfxlhSU7npnLs15vfKporrdT9M/t2X+t+xnDJWhs5T7g9ueul7DJRWVP4352RLX+pvBfNBTUO77WzwguuPll7EvpNz4dLERddLOXVJ0xI9VbAP6YbOnYzPfaKLlk7CHQBgfq7Pm2TsZ+xn7DddNvW090cN1uPJ7vn6oC6nQjP5unTzKiWcfwqjvZmxsuJ+/lyM7d2x8u0h6pTeWDjW/czTQ5SR3nK4OCXnAlNsdegs8JB10qU7QweDBT2nqd2+b/Ciq23zJaanBf4csM91XnSl15Oy7hJ/NuTn14WHrzf1xpe6a6kk3AEA5uP6vGnGfsZ+xn7TY2N4mLxtcrqlF/rO5RNT0j4fj/D9kqbAqWvmjBXh4ZQ7WfFP6CToR5XqfyE8etND7pT/917If93i99BJKjM97fZcgxdcKV5uyfFLdy2vDLnPdV10rc254Do34nbW5+yHpx3KI+EOAND+6/OmGfsZ+xn7TYcHC5L25oDSdET7Qv1PladjfjM8+jbENNk/wnfMqRrrlZLud3Lq8dIE203TS//Qs610k9QU3HNucffkzjvxzzpJprLdDjV4wfVXC45fuiP984j7XcdFV3plKWuR3fRDunyM7R3O2ZedunApJNwBANp9fT4NjP2M/Yz9mpemSym6YZP+28s11uVu3/m6cArb7MgIfW5/jfX6KmRP3zSplAP8pWeb6an3xbrOfEpf4kXzKx3WRFPZbgsyfpjTnbQ0R/zqkr9o32vZefFyt63SHel0wyQtOrMkPJzDr+mLrrzz6v0xt5dWJc96vTA9RfGMrjwxCXcAgHZfnzfN2M/Yz9ivOcu658qwb0bc7/bNKm0Ljz5hf6Vbz2l1LwyfdN9QU522Z5S9vaRtpxtpvWs7fhusgTl3nh7wpfGhJpradtsRHl3Q4Y0Ky7qUsY/rZvj4He0eo7yFZ75t8KJrX065aW64Sd6W+DBnu+d154lJuAMAtPf6fBoY+xn7Gfs1450wWrK4iuRtv/V9dUo3WJ6d8na8G0ZbRHVFDXXKmqbrqRK3n2729d4U+Up3mh/pRLoaPNk+q+32fQ1f5KH7xZ21iETbf1SbuOhKN3Ju5ZR7ZMJtrwj56wxs0q0nIuEOANDO6/NpYexn7Gfs14xVofPEdWq3LaEzNc/H3XPjfhicOH6y5PqkN1pu9pWzdQbacZSEe4pfQ/XTsCzoK/NeBWX0z2H/ri7Vfk90T+C8k/u0Jprqduu9E/dxxWVl3XX/rOXHeXtDF12HQ7WLFH1X8GPG+CTcAQDaeX0+DYz9jP2M/aZTmmb4g/B4Arw3Pi2xvJSP+qtv+8dmpK1GTbinOFFDvW6HR9dNqELvW0P3Q3sWoCZDmt/tQsFJ/XuwQOq0t9uDBXMuh+rngcpaWObVlh/rbQ1cdKUf67xX1a6VVMbbBfvlSYfxSbgDALTv+nxaGPsZ+xn7Tbc0C8KPOW19q8R+e7Zv22mO8GUz0kZ3++o9bNJ9b8X1utFXryq8EB5fhHqZbtNOX4TixR3WaKKpbrcHC+akMldXXNbKCi8AXHQ9an9BmccrPJ69i3hM6r8piboTzhLuAADtuz6fBsZ+xn7GftM19suTpj/JWwB3Ywnbz5r66M0Z6me9CfczMT4a4Rivr7Be13vK+b7Cco727ZP53Fvo9QEn8keaaOrbLd0d+yOU+2pSnn1hPpN5TVx0FU1VtKPEcv4pKGfShVYk3CXcAQDacn0+DYz9jP2M/WYj4Z6kufOzpk75YMLtpmN1O8z21ED9Cfe8sWzeWx9VLaLam3CvclHhdAz75/xfH2iN5X0nU3/8HapflEC7lSM96VDH9DVZrxTOw5dC3Rddzw/4gVlVYlmnCsrZ76JrLBLuAADtuj6fJsZ+xn7GfrORcE8+DeW/tXA2Y5u7ZqyfZSXc07QqV4c8zr+EavJudSXck5N9+3QlVD9NGDU5MeAE3q2JtFuPrFfQrrugr+Sia29BeXdLLuu9grIuuugai4Q7AEC7rs/njbGfsZ+xXzleyqjj6Qm2tyFje+nNhVlL1GYl3JO0KPStIY/11xXUq86Ee9ax3BuYeS8POHH/Cu6saLdHZb1SeNRFVyUXXacLyvuhxn1LrzhZvGN0Eu4AAO26Pp83xn7GfpSnf1qZMxNs63LGsTs0423S3x6bw/A3WN4puV51JtyT/gVj0/8308iM+3HASbtfE2m3PlmvFG5w0VXJRdftUP2iOQ+sHHBOb9ftRybhDgDQruvzeWPsZ+xHeS72tfOJMbezKee4vTyDbVKUcE8+CMMl3NONotdKrFfdCfdjQT62VV4Z4oRdrpm0W4/nMvb3ZpiftyDqvOgadBF0sOTyFoTHF+vojcO6/sgk3AEA2nN9Pm+M/Yz9qHaM9uWY2/khtGeqp0EJ99D998Muovp0SfWqO+G+PWN/0lPuC3Wb2TTopP1GE2m3Pll3F4+5oK/komvbgPNsZwX7VzRH2nldf+ILKgl3AIDZvT6fN8Z+xn5UO0Yb57iuzjlmJ2a0TYZJuKfFoa+E4ZLul2IsKqFedSfcl+Xsz5u6zexJT2DfH3Civt33mXQXdGOMz7o/MDe7neNejDsx/u52kHT39RXt1sp2+yVjfze76Krkouv9AefZlgr270JBebd8bU58QSXhDgAwu9fn88bYz9iPcl3qa+dVY2zjcBguDzUrhkm4J+ktkBthuKT7VyXUq+6Ee/J7xr78pNvMnj1DnKQrun/7ZOgkg6+H0VaF/jN0Vr9epN1a0W5ZrxSmeebmaVHdOi+6jg84T9ZXsH9nB5TpdabRSLgDALTn+nyeGPsZ+xn7la83ufzrmNv4J+d4vdKCNhm0iOzGMHxebdIbEE0k3E/k7MsqXWe2XBhwcv7b/buUYL4ZRksYZyWQX9NuM99uWa8UHp+zflPnRde5AefHUzV+wT+INb46RyLhDgDQnuvzeWLsZ+xn7Feul/vad88Y21gX8tcRnNWbYaMk3JN9YfhFVCe5CdFEwn1vzr58pPvMjoVh8LQoF8Lg5PKosVe7zXS7Xc6o2zYXXZVddF0acF5U8QbEsVD/q4xtJuEOANCe6/N5Yuxn7GfsV64j4dGHK8dJkB/MOVZ/z3C7jJpwT06F4RdRHfdmVRMJ97zvnN9n5WD+N+NRxsrDm0cs82qMD2NsirGkZzvpS/+l0HlV44cht/XeDH8RzHO7rcqo050wX68U1n3RNegNiSp8MaDM110njeT70FzSu8myAQBj1DZen88LYz9jP2O/cj0dHk0sbxpzOz/mHKszM9w24yTcF4fsm4J5i6iOMz1SEwn358LgqatdzEz5xcwHI5S1a4Ttrg2deagGbXfrjH4RzHO7Ze37rK6CPSsXXXcKyrpX0f4dGnAOWiF7NLcy2vCLOSgbADBGbeP1+bww9jP2M/Z7KN14+DZ0kt0fx3hmjG1829Oun41Zj3TDK2/Gha9muH3HSbgnKQF9bcjfqKNj1KuJhPuCgn3Y7WJmNi5mTg5RzpXQuQs3qsUheyqD/n1YPoNfBPPcbl4prP+iq2j6orsV7d//BpyDuwPDyrs7fa7lZQMAxqhtvT6fF8Z+xn7Gfh0vh+zFg98dYRuHQzk3rtYVHKsPZ7iNx024J+tH+J3634jbbiLhntzKqf9M3PR0MRPCLwPKSF8gz06w/TRlyqA5yGbxSct5bbfnc37053HV8jovuv5r4KJr94ByPwwMK2/ho3QxvbbFZQMAxqhtvT6fB8Z+xn7Gfg+9VdA+6Yn3ooVlnwyPLkx7YMK6vFFQlzdmuI0nSbgn7wz5O5XeFHl5hO02lXDPywledTEzGxczd2r4Yl3ZPaGLVgx+dsa+COa13Q5k1OPUnP7gzvtFlznA86VByOrQefVymJtz6XXEtC7EE2Hy+TCbLBsAMEaVcG8PYz9jP2O/h14Z4vvvQow9obPI7MYY27ttd7v739O6fS+WUJfPC+qwfYbbeNKEe3J8yN+qf8Pwi6g2lXAvenhuoS453RYMcRI+U1JZnw4o52PtNhPtljW//E4XXa18rdBF13iGmW5qUOyawbIBAObp+nweGPsZ+xn7PeqjMcZXaVqQY6EzDUxZTheUt3mG27eMhPsws0X0vpkwzENnTSXcTxXU/RXdcbotCYPnIC/LigFlXdVuU99uWa8U3ut+obnoqvai6+4UXnT9L8Dj/hNCCCHmJJjv6/O2M/Yz9jP2y/ZCjE9CZ/HTm91j8iDS/09PsacHod6L8WpFdfi24FhtmOG2LSPhnqS1FIddRHWYqZqbSrgXPa2/TVecbk8MOPFOllzehQHlPafdprrdPswo+6wL+louum41cNH1drBSPaOTgBFCCCHhzjxcn7edsZ+xn7Hf9LpRcKxeneH9KivhnqQnwO8P+Xs+6PxuKuF+NLgJNrNWDTjpjpVc3nsDytup3aa63bJeKXxjjvtPnRddVxsY8B0eUObrvkLJIAEjhBBCwp15uD5vO2M/Yz9jv+lVtKbgkzO8X2Um3JNBN5J6b2StLdhOUwn3orn6v9ANptuTod55ul6puTztVp68VwqXuOiq5aLr3IBzoIoFM74cUOYWX6FkkIARQggh4c48XJ+3mbGfsZ+x33QrenJ76QzvV9kJ9+TokL/p/8RYnrONphLuRwrq+5VuMN2W1pzIXRjqnYpFu5Un65XC83Pef+q86Bq0GGYVF79fDShzja9QMkjACCGEkHBnHq7P28zYz9jP2G92x1wS7o/n034c8nc9zb+ftYhqUwn3PQV1Pa4bTLdBidyjFZRZNB/Zee02te12JZjHrcmLrk8GnHPrKti/U6H+JysAAGAWrs/bzNjP2M/Yb7pJuI/mqRj/huGS7lkP0E5jwv2kbjBbJ3Qdryh8U1DeRe02le2W9UpheoVpmYuu2i66dg74UdhUwf4Vvcp4y1cnAABzfH3eVsZ+xn7GftPPlDKjWxuK83i9savvs55wZyxXCg7giQrKOx2K50zSbtPXblmvFH6j69R60bUu1L+Ize8F5Z1x+AEAmOPr87Yy9jP2M/abfkWLpj43w/t1t+Lz7s0wXMI9te9LPZ9rKuF+IJjDfaadKTiA5yoor2g+sh+121S2W9bNhd26Tq0XXWkesaK72O9W/GPXH584/AAAzPH1eVsZ+xn7GftNvxsFx+u1Gd6vqhPuyedhuKT7X+HhIqpNJdyL6vqlbjD9DhYcwD8rKO94mP053Oep3V4I2a8UPqnr1H5BfynUt27AogE/PlsdfgAA5vz6vG2M/Yz9jP1mQ9GUwxtneL/qSLinG1o/hOGS7t93P9NUwv3Lgrrt1w2m39aCA3i3gvKKEscntdvUtdvBgi8dF131XnQdKSjvbMllrS8oyxyOAAC4Pm8fYz9jP2O/2VA0A8KWGd6vOhLuSXpy/a8wXNL9cGgu4X6soF47pv1g/jfjcb2ENlgail9XWlHjF8MXM/RFMC/tljWX29t+3xq56Coq70bJZe0qKOsnhx4AwBi1wjHqrFyft42xn7Gfsd9sOBTqneO/LnUl3JM0R/udIX/XenN/dSbcTxTUabOLmdm4mCl6nWJbyW1eNPf5zhn7Mmh7u63J+aJZ7vetkYuuhTHuFZRZ5pMHXxWU84FDDwBgjBok3NvE2M/Yz9hvduwoOGZvzfB+1ZlwT3aO8RtXZ8L9dEE9nnIxMxsXM/sKyjhUcpt/X1DWCzP2ZdD2dst6pfAHv22NXtCfCvXMrXe5oJxVDj0AgDFqkHBvE2M/Yz9jv9nxQmjHzBH96k64J5+G6U24583Vf8fFzOxczKwI9b1CdCunnH9n8Mug7e2W9UrhHr9tjV50Fa0d8FlJZSwrKOOSww4AYIwaJNzbxtjP2M/Yb7bkTYdycob3qYmEe/J9mM6E+42cOnzrYma2Lma+C/lzFZX1GtnSgn35fEa/ENrabmtyynva71qjF11pRe1/csq8XFIZRa+n/c9hBwAwRg0S7m1i7GfsZ+w3e/KmHb4ww/vUO43S2RrLfSLGn2H6Eu5560Z+4vSfLZsKTqh3aviRelG7TVW7fZRR1o+6yVRc0H9YUO7KErZ/smDwtMhhBwDA9XmrGPsZ+xn7zZ53co7drRndnwWh2ae4V4f8mSWaSLg/UVCHTU7/2fNrzsH8taTtH87Z/jhzw6U5q453fwjudTtGmuNsg3YrRdYrhXt1kam46EpvTtzOKffAhNteGvIX5zngkAMA4Pp8Jsaoxn7GfsZ+7bYy1LOobl36Z3Zo4m2p7WF6Eu6bc8pPfXah03/2bCk4qSa9SCh6HWrtiNt6LeTPV5XimHabSN4rhc80fH6mO3xpQYt/u18yV2Psn9ML+oM55f7dPWfGlbcQ8I0Z/dEGAGB+NHl9Pm1jVGM/Yz9jv/b7JecYbpnBfelPMN+f8Pwe10dhOhLuu3PKP+O0n115q+BOOkfY9pIuPNKdnH/C4LtOR7Xb2D4O1S8CO6p0Z/9KTlt801CddjZ40bU45M8xNu5ce4sK+tZuX40AAEy5pq7Pp3WMauxn7Gfs1255N01m8Q2FrATzmobqcj40n3A/nlP+Tqf97FoR8lfC3TfBdn/L2F56dW3piNvZEoZfsGe9dhvL1ZL3oQynBxzrJp52KJpP72oN5b+WU/Y/Y54fH4bmFwUBAIBZuz6f1jGqsZ+xn7Ffu6WFjbMW1jw3g/tyaoq+i57I+W6ss49cDtnz85tOZsblzRV0f8wLhPdC9iIc4yzysWuEi5lz2m1kL+Xsw7MNno+LQv7qzHVe5PT7saA+dc2r9W5O+SdG3M7anDb+vftjAwAA066p6/NpHqMa+xn7Gfu1W1aiOk1vtWCG9mFFyF5P4I/QecOjCatC9iKqdSTcl+T00cNO93Z4M+SveDzKirhZd/tT0vjFMeu1Y4SLmXsNfMlMa7sNK+uVwl8aPhfXDHGs79dcp1eHqNO7NdXlg5zyPx7y82lxp2s5P25P+yoEAGAGNHl9Pu1jVGM/Yz9jv/ZaF6pZT7Auab2IywV9K00j1dSNoKyHautIuG/P+d5b6XRvj3SQ81bEPhLjqYLPpjvTWa8ppbumz01Qp1UjXMw0tdjLNLbbsP4I0/HKXn+bDDrO12r+Qbs2RJ3SOVDXYiXpRs/djDqcGnDhlJ7GuZnxufQEx3JfgQAAzICmr89nYYxq7GfsZ+zXXllvYByZ8jq/0q3jnSH6V5q+OeXJnm+gnv35uToS7l9ltMHXTvP2WRXyX5+61z3Z0rxKr4fOyt3pSzwt6Hk9PH43Jq0yvqSEOn05wsXMK9ptaHmvFK6agvPw3IDjfKiii730hb6+e4zej/HDiBfTKS6FzkrXaRsbQ+cJiSrm4F8dslcpT+fbydBZhCTVYUe3vX7P+Nt04ZYWWFngqw8AgCkzzdfnszBGNfYz9jP2a6esOf7/ncJjmxYCvRCybxgNGyn5fqbm79Ezob6Eezpm/TfGUl7wOad5e6W7tT+O0RnudS8+yv7h3t2tz6COulS7De1QRj0uT8n5l54CyVtFPbVvFfN6bZjgR2BQnKmwrXblXHwVRbqr/Hlodr5GAACY5evzWRmjGvsZ+xn7tc93Gcd6+5TVscx+tavGeqfv7CuhnoT7zox9/czpPR+e6V5IpNcZ0h3fm90LirvdL+7r3RMwvRqS7qguqrl+vXfq72q3VlnebZ/r3XZLi+WkO/JWac6W5udLC++e6rbV7Z5zLp1/34fOTR3nGwAAzN8Y1djP2I92nQP9C21e1CylSfOnp+mlzlZczk/h8TcVLGbMVFjcc2J+qzkAAAAwRgVaLuvNlVc1y8xYH6b/LQXmWO/cVW9rDgAAAIxRgZZLN/f6F0P+RbPMjF+DhVKZYp93T8z02tRSzQEAAIAxKjAHXg6PPyXtRt/0e6/vmF31e8E0SauKP5iz6oDmAAAAwBgVmCP7w6PJ2xsxntIsU+u50Fnb8cHxSjdnV2kWpkV6deZy9+RMqwdbCAQAAABjVGDenA6PJt2/0yRTaVHP70SKdIN2g2ZhWqSVys93T850V2iNJgEAAMAYFZhDS2JcCo8m3T/ULFPnq75jtFOTMC3SnEbf9pycWzUJAAAAxqjAHFse4/fwaEJ3i2aZGv1T/7ylSZgWaZ6jB6v43ouxQ5MAAEyNhd3rs+Oh87psesozvSp7N3TmEz0bOnMam6cSMEYFKF+au/1KeJjUvR1jrWZp3K7w6DQynmxnqk7OW92T858Yr2gSAICpsTfGtfDokztFcS7GSs0GGKMClCo96f5zzzXX9RirNUtjXu85Fuk3Y6MmYZoc7Z6c6Z9PaA4AgKmQrssuhOET7b2RnoDfrgkBY1SAUqWprs71XHOlhyKe1yy1e6PnGPwZ4wVNwrR52pcDAMDUDeYuh/GS7RaMAoxRAap1MDyadH9Jk9Rmb0/bp0W13ZgFAAAGOhsmT7Y/mPf4Rc0JAFC69TH+Dg+nNNmgSSp3uNveaR2j9zQHAAAwjN3h0aT5xRhvhs4Cggu6f7ModJ6kSgONK6E46X5ZkwIAVGJZeDgNVkq6L9YklV8jp2tbU8gAAABDWRI6C3A9eDr9zSE/tyd0nvTJS7pv0bQAAJVZF2OrZqhUeuBkr2YAAABG8X54mCQfddHT9FrzvZCdcD+paQEAAAAAmCd/hU6C/MiYn+9N2PfGHU0LAAAAAMC8eCV0kuP/xlg65jYWdD+flXRfpokBAAAAAJgHn4ROYvzdCbfzWchOuK/XxAAAAAAAzIOfYlwLnQWhJpHmfpdwBwAAAABgLqWpYO7HOFjCttaE7IT705oZAAAAAKBdnoxxqBtNeyrGWzG+jvFzjFsx7sa41/3fF2Mci7EtxsKK67IhxjMlbCfN/96fbL/ntAMAAAAAaI+UCD4Q43boJIG/a7AuL8U4FzpPlf83ZNyI8VGY/sVHsxLuPzr9AAAAAABmX5qTfF+M6+HRJHATCff0dP3X4fGEdHqq/WSMXaHzNPvOGEdi/J3xt2me9a1T3N4vZtT5oNMQAAAAAGB2pXnJ3wnZSesmEu4v5dTldOhMLZO3D3tj3Mn43CdT2u7bMuq6yukIAAAAADCb0pPif4biKVrqTLi/GjpzsvfX4bMhP78udKaU6f/8l1PY9vuD6WQAAAAAAGbe9hhXwnBzoteVcF8bspPt50bczvqc/Zi2J93P9NVvo9MSAAAAAGB2pKTuz2H4BUjrSrg/HTpzrveXfTPG8jG2dzhnX3ZOyXFYGONeT70uOjUBAAAAAGbDyzF+iHE/xqnQmT98SXg4f3vTCfefcsp+f8ztLQvZU8ukJ+ifmYLj8WZfvdY4RQEAAAAAZsPRGB+G/EVHvw3NJdz35ZR7O8bSCbb7Yc52z0/B8eh9y+BTpycAAAAAQHsUPeVeZcI9TSVzK6fcIxNue0XoPNGfte1NDbb1pp56/BZjkdMPAAAAAKA90iKqTSTcDxeU+3IJ2/8uZ9u/NtTOaQqf38LDJ/hXOfUAAAAAANolzeled8I9LYZ6L6fMayWV8XbBfjXxlPsHPeVvd9oBAAAAALRPEwn3/QVlHi+pjJUFZXxbcxuvDg9vMBxwygEAAAAAtFMTCfdfC8rcUWI5/xSU82xN7ZsWf/29W+ZRpxsAAAAAQHvVnXB/vqC8FGXObX6qoJz9NbXvuW55Z5xqAAAAAADtVnfCfW9BeXdLLuu9grIu1tC2H3fL+j7GQqcaAAAAAEC71Z1wP11Q3g817tv9GMsqbNc93XJ+Dp1pZQAAAAAAaLm6E+63Q/ULpj5QtHBqiu0VtemO7vbT3O3LnWIAAAAAAPOhzoT7oAT4wZLLWxA6T7LnlXe4gvbcFONe6CzY+ozTCwAAAABgftSZcC8qK8XOCvbvVkF550sua12MOzGux3jBqQUAAAAAMF/qTLi/H4oT7lsq2L8LBeXdKrGc1TFuhM6UOS9PuC0LrAIAAAAAzKA6E+7HQ3HCfX0F+3d2QJllJLefjfFv6Ewls3HCbaVpcH6LsdapCQAAAAAwW+pMuJ8LxcnvpyrYvxMDylwz4fZTnf/qbmtHCfX9JMbfTksAAAAAgNlTZ8L9UihOfi+qYP+OheqmsXkixq/d7bxdQl13dbf1odMSAAAAAGD21JlwvxmKk99V+GJAma+Pud0lMS6GyRPkaQqZV2Ic7anTSqclAAAAAMDsqTPhfqegrHsV7d+hUJxwf3OMbaZ5378dsN1x44JTEgAAAABgNtWZcL9fUNbdivbvf6E4wb17jG2eDtUk21O85ZQEAAAAAJhNdSbcixLNVSXcdw8od9TpYL4M1SXbb4dq5rEHAAAAAKAG855w/3yEbR38v/buHzSKIIoD8BBCEAmCRQorwUJExM7iCpGAiIWIjUgKsRDEKoXYiAQRESSFiIggFlYSSCEithZiIWnEUgJiIRYiBAkih6RwhouF4XYup7Nz/vk+eF1u327eVj+Gt6G9sD3VXa8jAAAAAMDf619fKVMqcO+EdsP2VAe8jgAAAAAAf6+agXs3/HmB+zmvAAAAAAAAJdQM3FdD/cD9fMgH7me8AgAAAAAAlFAzcF8O+fC7DTcH9DzpFQAAAAAAoISagfuTkA+/x1t4vnsDeh7zCgAAAAAAUELNwH0h5MPvrS0834MBPfd7BQAAAAAAKKFm4D4f8uF3p4XnWwz1T9UDAAAAAPAfqhm4z4R8+H20hefLrbFZNX4AAAAAAEqpGbh3Qv0PmL7J9Htk/AAAAAAAlFIzcB+LtZbpN9vC83Uz/eaNHwAAAACAUmoG7slSpt/9wr0mQv5E/XHjBwAAAACglNqB++1Mv8eFe01neqWT9tuMHwAAAACAUmoH7rl+K4V7nc70emn0AAAAAACUVDtwH4/1LdOz5KnzB5k+l40eAAAAAICSagfuyWKos1f9dabPbqMHAAAAAKCkUQTuxzM9bxXqsS3TY8nYAQAAAAAobRSB+1isDw09XxfqcSrzXOeMHQAAAACA0kYRuCdXMn13Fbj+QsO1P8WaMHYAAAAAAEobVeA+FetLQ9+537z2ZGj+MOuckQMAAAAA0IZRBe7J1Ya+70Nv7cyvuthw3ZXQ2+0OAAAAAADFzYTRBe5bYr0LZfesp3UxTfvhzxo3AAAAAABtye1SX67Q/1BD7xSaTxZ8nqdGDQAAAABAm16E5sA97UEfr3APsw39Hw55nQOx1vpc502s7UYNAAAAAEBbDobmsP1HzVa6l8sN/a9v8vd7Y33s8/u3sXYYNQAAAAAAbemE/gH1xvoS61ilezoTq9vnHhZDPjQ/Hetzn9+l0/tTRg0AAAAAQAnpI6J7Yk3HOhHrUqznYXDQvrGWYl1bv8aR0DsdP9nC/e6L9Sr0X2+zEHofPk33cCrWjdBbF7Pxb1NoPxdrzPgBAAAAACjlcBg+XN9sPWrxvtOp9VdD3s/XWHdi7TR2AAAAAAD4WdrNfiH01sosh96Km+56pTUyz2LdC71T7xP+XQAAwLC+AwvqUAxLgXS+AAADFHRFWHRNYXRoTUwAPG1hdGggeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzE5OTgvTWF0aC9NYXRoTUwiPjxtc3ViPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5GPC9taT48bWk+aGQ8L21pPjwvbXN1Yj48bW8+PTwvbW8+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPkc8L21pPjxtZnJhYz48bXJvdz48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+bTwvbWk+PG1vPi48L21vPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5tPC9taT48L21yb3c+PG1zdXA+PG1pIG1hdGh2YXJpYW50PSJub3JtYWwiPnI8L21pPjxtbj4yPC9tbj48L21zdXA+PC9tZnJhYz48bXNwYWNlIGxpbmVicmVhaz0ibmV3bGluZSIvPjxtbz49PC9tbz48bW4+NjwvbW4+PG1vPiw8L21vPjxtbj42NzwvbW4+PG1vPi48L21vPjxtc3VwPjxtbj4xMDwvbW4+PG1yb3c+PG1vPi08L21vPjxtbj4xMTwvbW4+PC9tcm93PjwvbXN1cD48bWZyYWM+PG1yb3c+PG1uPjU8L21uPjxtbz4uPC9tbz48bXN1cD48bW4+MTA8L21uPjxtbj40PC9tbj48L21zdXA+PG1vPi48L21vPjxtbj41PC9tbj48bW8+LjwvbW8+PG1zdXA+PG1uPjEwPC9tbj48bW4+NDwvbW4+PC9tc3VwPjwvbXJvdz48bXN1cD48bW4+MTA8L21uPjxtbj4yPC9tbj48L21zdXA+PC9tZnJhYz48bW8+PTwvbW8+PG1uPjE8L21uPjxtbz4sPC9tbz48bW4+NzwvbW4+PG1vPi48L21vPjxtc3VwPjxtbj4xMDwvbW4+PG1yb3c+PG1vPi08L21vPjxtbj4zPC9tbj48L21yb3c+PC9tc3VwPjxtZmVuY2VkPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5OPC9taT48L21mZW5jZWQ+PC9tYXRoPjwtaGoAAAAASUVORK5CYII=" style="width height margin-left margin-top transform rotate translateZ0px; -webkit-transform rotate translateZ0px;" title="straight F subscript hd equals straight G fraction numerator straight m. straight m over denominator straight r squared end fraction equals 6 comma to the power of negative 11 end exponent fraction numerator to the power of to the power of 4 over denominator 10 squared end fraction equals 1 comma to the power of negative 3 end exponent open parentheses straight N close parentheses"> Ta được F hd P = 1 , 7 . 10 - 3 5 . 10 5 = 34 . 10 - 10 . " src="dataimage/jpeg;charset=utf-8;base64,iVBORw0KGgoAAAANSUhEUgAABOQAAAEOCAYAAAApJshfAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAABGJhU0UAAACwC0UhEgAAOS5JREFUeNrt3Q/kVefjB/BHkiSRJMmMJMlMzHwlk8gkmUSSSSYmMzMTk5lMRmZmJiOZyUzMZDITM5OZicnMTGImk2QkST4S+53nd2+63e75c+89f+/n9eLx3e+3fc55znOez7nnvj/PnxDq921S/puxsiQAAAAAQEvNYiC3zG0FAAAAoK0Wh16A9XxSdiXltaR8k5T7obuB3AtuKwAAAABdsyYpv4Txw7AHSbmSlAuhN/pu3PJdUr5Pyt9JuZ2UuQnqsN3tAwAAAKCLYig3zki5n5KysoJ6LEzKhqTsTsr7IT8o3OHWAQAAANBV50LxQG53jfXamJQfU+qx020DAAAAoKvimnJFA7k1NddtQehNjW0yGAQAAACAUsWNHooGcosaqN+KpNwaqsdetw0AAACArno2tDuQi44N1WO/2wYAAABAVy0N7Q/kVofe7q4P63HAbQMAAACgq5aE9gdy0eAGD6+4bQAAAAB0VQzZuhDIvTNQj6NuGwAAAABd1ZVAbvtAPU66bQAAAAB0VVcCucF6nnLbAAAAAOiqrgRy0Z6k7EvK824bAAAAAF3VpUAOAAAAADpPIAcAAAAANRLIAQAAAECNBHIAAAAAUCOBHAAAAADUqG2B3Bv9c91xawAAarEgKbuT8llSfuy/h93vl7tJuZyUM0nZn5TFmgsAYHptC+S+CAI5AIA6xHDt3aT8O8b7YAzojgfBHADAVNoWyP0WBHIAAFXblJSrY7wHDpf4sxs1IwDAZNoUyC0fOJdADgCgGjuTci9MHsY9LLdCL9gDAGBMbQrkXg0COQCAKm0PvbXh/iup/BN6f1QFAGAMbQrk/gwCOQCAqjwVeqPaBt/vriXlWFK2Db3rrUjKS0k5nZS5nHfETzQtAMB42hLIHR06l0AOAKBcPw+8a91OyuHQ22E1z+qk/JDxjhhH3K3QvAAAxTUdyMUdut4fcS6BHABAeQ4PvGf9EXqj5caxMGSHci9rYgCA4uoM5OKL3Mqk7EjKwaScTcrdlHMJ5AAAynvfu95/x7qUlGUTHieOlEubvvq5ZgYAGO8F7b8WFoEcAEA5XguP1otbOeWxPk95d/tGMwMAFCeQAwCYbXGK6oOkbCrhWHtT3t2+1cwAAMUJ5AAAZtdz/Xerd0s63vaUd7dzmhoAoDiBHADA7IqbOVwJvbV8y7A65d3tlKYGACiu7k0dViRlZ1IOhd6mDveCQA4AoCueT3l3261pAACKqzOQG2VpUj4IAjkAgC54acR7262K3hMBAGZW04HcQ8eDQA4oZnn/mWF6FPo21O+dEe+I72oWAIDxtCWQW5CUa0EgB6RblpRjSbnrOYG+3aiNSXkjKV8m5dek3E7KXFLuh95SFDdDb4H/OAJ+e/8zntnx89D74Z/B6DgAgLG1JZCLBv/i6os28FCc2v5u/0u/kbTFPRts2KNvlyeGhm+H3uYA4973f5PyfuhtBkC3PROenKq6QbMAAIyvTYHcel/agAFLQi+ovxWEO5P4NLQvkPvHbelk345B3O2M+xr/3fehN1puLuO/i6PnYgBpxFx3/RAeD+P+p0kAACbTpkAu9L+E+KIN89vipBwJvVE1RltNJo68mgvtC+RO6tud6tvxD2W/pdTxRv9aVo34uTg688OMPng5KWv9mnbOGwP38K9gZBwAwFTaFsid80Ub5vXz6K3+F33TH6fzZmhfGBfLNn27M317R3j0R7Lhcj70NqDIE0O3SynHiKOrXvCr2hn7B+7d56EX+gMAMOWXhDYFcqd90YZ5Z2HoBUhFwwqBXL4/Q/vCuJv6dmf69r6kPEip25kxjxVHBV4I6VNYt/l1bb3jA/csjnr8KClPaRYAgOm0LZA77Is2zBtxHanXQ29dMRsElOeF0M7Rcaf17U707d0Z9bo44THjaKrfM671Ob+2rRTvS9qU5bij7gfBSDkAgIm1LZADZl8MK2L4fq3/bIkjcX4KvcAmrjv1cxDITeNsaGcgt13fbn3f3hx6o9ZG1eluUtZMcey43tj9lGNfT8pKv7qt8XzoTUsu0levz5PfbQCA0gnkgLo9nE4Zd2R8I+WL+GdBIDeJuMD+qKmGMQiKUyfj9MDFFZ5/fUhfL2yBvt3qvh3rmjW19u0SznE84/gX/Po2alnohcmXw2SB+xuaEABgPAI5oG7HkrIx579ZFQRyk7bt8E6YdY5eeSfM7+mqXe7b32bUJ/ajMoLcOL3xdsZ5XvUr3IgY1t8P04+CfUVTAgAUJ5AD2ipvYwKB3OPiCLTBNcviVLK6F15PWydsh9vT6r69P6c+x0o814mM88SRlCt0j9o9G3prB8bNPF5OymuhF6KfC+NtSBI3fNioOQEAihHIAW31TRDIjeOlobap+4vxhpT7FEdELXB7Wtu348i3rM0n4hToNSWe7+mcaz+le7RODOxikHqrwLuiqccAAAUJ5IC2OhcEcuP4YaBt9jdw/mMp9+kzt6bVfftoTl1+qOCcF0N2ALheF2mlOOX44wLvi5s0FQBAPoEc0FYCueLWDbTLFw3VwXTV7vXthUm5mVOXwxWc9/Wcc5a55uD20M5dh7u8zuKukL4bbywf+RUHAMgnkAOEFt33YXi0+H4Ta3ClTVe9G0xXbXPffqXAZ/+aCs67LueccYOBVSWdSyBXjd0Z13LFrzgAQD6BHCC06L7v+m2yr6Hzp01XPePWtLpv/5RTj78qPPe1nHO/W9J5BHLV+dw7IwDA5ARygNBiNmxu8Nxpu4a+5La0tm8/VeBzv8pA9cucc18t6TwCuWr70IOU69ni1xwAIJtADhBaMI2NKfcnrjFlump7+3beOm6xHKzw/K8WOP/zJZxHIFetb1OuZ5dfcwCAbEuCQA4QWjC5tOmqX2qaVvft8wU+96sc5bStwPmP6yqtlxbs7tY0AADZlgaBHNBOArluuOILeef6dhy5OJdThweh2hGORUbo/6qrtN7OYIQcAMBEng7FA7mlmguokUCu/Z5NuTcx7FmoeVrbtzcX+My/XkM73A75oaB3j3ZbmXLvXtQ0AADZXgzFA7mtmguokUCu/d5LuTdnNU2r+/ZrBT7zz9fQDt8WqIeNQdptccp9W6FpAACy7QvFA7lZmn4Up8rs7X9pnA/rHK0PAlW6RyDXfmnTVfdomlb37bwdTqveYfWhL4J15LpusWczAMBk3g/FA7mjHb/W+NfauGPc10m5P3Bd387ovd3Qv2eXZ/w6mV0CuXZLm64an6/WHG133/6lwGf+sRra4USBepzTXVptXTBCFgBgIj+F4oHcjx28vhhKHUnKxdBbi2bUdc1KUBUX345TkD9OytUZvk6EFgK5djiecl++0jSt79t5GzrE8nIN7XCgQD3+0V1abXdDfQcAoNM2huJh3MOysSPXtimMDqVmLZCLU1EP97/c3Zvh60RoIZBrn7Tpqvs1Tav79pKCn411rN22p0A9qt7tlekMz7S4FYyQBQDItC7jy1RW+St0I5R7JvQWG/809KZO3AmzGVSdHuPeCeQQWlCW54Lpql3t21sLfmbsqKEddhasywZdprX+HLpX72oSAIBH4pej1f2X64ejqR6E8cO4wb9Wfxd6u7TFl+m1obeob5v/gh2v/26YvaBq8dA1vhcEcggtqF7a+qNfa5rW9+3dBT/rX6ihHdoUDjK+bUP36XpSlmoWAICeO2Hy4G2Ssr3FbfFVmB9B1U9BIIfQgmr9FZpbd0zfns7LBT/P6whWlhWsy15dppUud+gdEACgdgK5R06F+RFUnQ4COYQWVCdruupizdP6vn2o4Od5HVOPFxesy0FdZioLQ28TlrhBxu3++8DuKY95bOgevaeZAQBIczLMj6DqWBDIMRsEcu10IuV+fKNpOtG3PwrFQrA6lqFYVLAux3WZSu55HOE2ybrAw6MsT2liAACyzJdA7rUgkGM2COTaKW266gFN04m+XXQzoLoUqcunusxU/s1o2ziyNW7EUHRE5NFgEwcAAMYkkINuEci1z/MZX+ot5t6Nvt3FQO60LjOV3wu0cZzO+nZS1oz4+ThaMk5xHVwz7kpStmhaAACKEMiB0ILpfOj50vm+LZCbf14L460H/HfoTUGP/TRuFHU/PB7EHQ71TGkGAGBGCORAaMF0rqXci1c0TWf6tkBufoqj3+bCZBt23Qi9deJe0IwAAExCIAdCCyaXNl31QVKWa57O9O1TQSA3X60KvdFtXyblt9DbcXVuoMR+92e/f8Z+sj8pGzQbAADTEshBtwjk2iVtuup3mqZTfftk6F4gd1KXAQCA7hLIQbcI5NolbbrqIU3Tqb79auheIHdMlwEAgO4SyEG3COTa438hfbrqCs3Tqb59IBQLwRbV0A6LCtbloC4DAADdNUkgFxcw/jgpF/tfkOJOY3GdletJ+ar/xabKncYWJmVPUs6E3nov9/pfgOP//pKUE+HJ9V0EcggtKNtHKffgB03Tub69JxQLwZbU0A5LCtZlry4DAADdNU4gFxcvv1Twi8LfSdlScl3jqIGjSfm3YB2+ScrT/Z8VyCG0oGz/pNyDw5qmc317R8HPlfU1tMPKgnXZocsAAEB3FQ3k3in4BWGwxJFzL5ZUz2eTcmXo+HF03BuhF/wtDb2d0nYl5dPQG7H38Atc3BFNIIfQgjJtCenTVVdqns717eUFP9derKEdthWsy1pdBgAAuqtIIPdZGD+Me1huJWX1lHV8KTwK2GKJU1NfzfmZNaE3bezhz/weBHIILSjPx8F01Vnr2w8KfKbtqqEddhWoR6zrAl0GAAC6Ky+QOz3w//sj9EaarR/4IvBUUo6EXvCW9sXh0ynqt3voWDGM21rwZxcU+IInkENowSSup7T/a5qms337j5AfhO2roR32FqjHNd0FAAC6LSuQO9r/5zg67Y2c48SQLm1ttzh1dekEddvc/9nBYx0Y8xhx3bnfg0AOoQXlyZquukrzdLZvnw35QVgdgeuhAvX4WncBAIBuSwvkHo7+uBl6wVgRB0N5owpWJOXG0DG+m/AatwaBHEILypM2XfWipul03z4W8oOw0zW0w+kC9XhPdwEAgG47mfHCH8O4DWMcK04RvZFyrM/HrNeokQrPTnGdfwaBHLNBINe8tOfc65qm0327yNptZ1vQDnWtZQcAAFToZMYXn+cmON4XKcf7foxjvDDi53+c8jrPBIEcs0Eg16ysEbdrNE+n+/bSkB+EXa6hHX4N+Rs6LNFdAACg24rssjqO11OOd3uMY1wa8fOHp7zO94NAjtkgkGvWJynt/pOmmYm+/XtOHeZqqMNcaD4UBAAAKlZ2ILcnpG/sUMTmUM3Ik9eCQI7ZIJBrVtp01Tc1zUz07Y9C/ii5tRWef22B85/QVQAAoPvKDuR2ZnyJKOKzET93q4TrFMgxKwRyzcmarvqU5pmJvr015Adieyo8/94C59+sqwAAQPe1KZBb0P/CNfxz50u4ToEcs0Ig15xPU9r8F00zM307fg79m1OPDys8/8c5576umwAAwGxoUyCXNjLh8xKuUyDHrBDINSdtuuoRTTNTffuTnHpcrPDcv4TmwkAAAKBGbQrk3kr5uU9LuE6BHLNCINeMrKmMT2uemerbm0L+LqeLKjjv0v6xs869UTcBAIDZ0KZA7mzKzx0t4ToFcswKgVwz0qar2vFyNvv25Zy67K7gnPtyzmknXwAAmCFtCuR+SPm5QyVcp0COWSGQq1/WumJva56Z7NsHc+pypoHr36OLAADA7GhTIHcr5efeLOE6BXLMCoFc/bZltPc6zTOTfTuGsP9k1OVeKHfa6oqk3M843xXdAwCYcetDbwkPmDfaFMjdS/m5kyVcp0COWdHWQO5wUr7vn/9+/3/j//16UhZ3vM1PhW5OV13Tf35eS8pc6I3yi9eyVt8u3Kez6nO4xHMdyTnXfo8+AGBGrei/s8a1dA80cP6FobccyWeht0TInf678+B3mg+SssWtomxtCuTmQnVTgwRyzIrzLQstViblUk6drofepghdlDVd9WiL6x1fGG5l9JHt+nahe/9bqH7UWnwJvJZxnkseewDADIrvQHH5l9sD7z11BnLLkvL+0PnzSnw33OXWUZYujJA7V8J1CuSYFVdaFlp8X/DDK/6F6cUOtvf2jGta39I6rw7pYdxgP1mrb+eKO65m7Xz6SgnnOJLze2NnVQBg1sS1cf8e8e5TVyD3UlJuhCcHEcT3ss2hN3V2Q1JeDr1Rc8P1jBtSLnMbmVYX1pC7UcJ1CuSYBUtywoH/+v9+QU31eT4U/2vSf/3f8TUda/O06aq/dfC5XsfGBLPStwe9mVGnm6E3zWJSMTy9k3H8NwMAwOx4Lik/Z7z71BHIvTPivF+H7PXrYr2GZ/T90X+Xg9K/uDURyGWNtFk+5XUK5JgFh0KxoGVbTfV5JYwXyMVyukPtnTVd9d0W1/t6wXtxT98u7POMOp2fon/9mHHczzzyAIAZsSbnfaquQO74iHN+U/BnXxzxs1dDbwkfmEibArkvM35235TXKZCj6+JfbP4qGFp8X1OdDofxA7k4Ba8rmzy8mHEdbZ5GeH+M+7FI3y7sq4x6nZrgeGczjve1Rx4AMAPie/+xkL48VZ2B3KhMIK7jO87U03dHHCNOaV3gVjOJNgVyr2f87LkKfvkEcnTFqqRcDOMFXydr+GDYF8YP5GLpykKon6XU/4+W1/tWwfvQ1BTQLvTtNJ+E7BBtecFrvpBzfQAAXRdn08SZG/GPkNv672/rQm9UWd2B3JZQzk72C1Lq/4HbzSTaFMhlrUcVR3xMMxRUIEfXxC/2u/q/o3fDZMFXXCg1/kUqjvSqYiTUignrdrAD7R8/bNN2XHqv5XX/PLR7tFkX+naW/Rl9I05xjrvvPjXi59b265z2s3EtuZc9+gCAGRBnD8RBNaNmlWT9Ub+KQC6uVTxqNsaVCY+XttTKJredcbUpkIv+yfj596e4ToEcbRf/ahM3MImjm+YmDCnyylz/+PE8e0sMJx6MWY8jHbgfXZ2uGsW/POZNC3hQ40tDV/t2lriA75mQvyvsj/1yJ+e/jX85XuMxCADMiKxNr5aHegO5YynnemPC4y0Mo9eZ/tVtZ1xtC+Tey/nCtXbCeqUd9xddgJbYXlFQUceHXQyo4l/BrhQMXF7pwP1Im656tSP9aUdIH30Ww7o9+nYpNiTl05AfuKXdh/h784zHHwAwz9T1Hrcy5ftJ/OP0iimOm7aMyW63lnGcSulI3014vN0Zv1wLpviFGQzQFo5Zp3jeP0L6CAagOvH3b3jx+r2apRZr+8/4m/3navzfuMvtOk1TST+PoyrjSO44PSMGt3f77T7X/+e/+v/uRP+/tfgvADBf1RXIHU85z49THndbynEvu7WMI22toX8nPN7+jF+uJQWPcSxkjyo4N+YXmU9yjrdRN4BKHRj6nVuvSQAAYN6qI5CLmcHNlPMcLeHY91OO/bzbS1HnQrm772WFaS8UPEZcoPv3kB2ixV358qavxpF0D6fkZq2n9GfoLaS9tV/HZ3ULKNWJgd+3fzQHAADMa3UEcrsyzrO9hONfSDn2abeXov7N6KTbJjjejxnHOzzGcWLYdjNkh3L3+509/qI93GUvhohx9M3r4dF2xHGr5bxRd23YeRBm1c/BluAAAEBPHYFc2prQcfDRwhKO/0HK8eNGY5YmIdc7ITuYuhTGW+hwf87xroXxpqrFoZ55oVxeib8MccHs1wr8t3FU3tvBTndQpk1DH35PaxIAAJjX6gjk/gnpM+TKsC/jOra6xQxbGnq7oL4b8qeEPiy3Q28UWtyR79mU470ZHh8Bk1XiF/Jz/c77VIE6x5Fyv4XJwri/w6P14dICuRtJ+agfGgDlGxw1+7HmAADG8MOI93cmtzz0Frk/pSloWNWB3JqMc5wt6RybM87xnlvMsKwdUIuU4Y0e9k15vJMF6x2He74Vio+Wi6FfDNmWDhxjMJCLU12/SMqOYCgpVOmtgd+7m/2XQACgmDilKi7NEqdFxT9oxz82P9zBOb7PxjWS4x+Xv+m/V8d3/UUzdP1vpLzrM75lobeEz91+G95peX039u//l0n5NfQGiQz2+5v934n4u7Hdd7pOqjqQ21tCDpFnUcY5LrjFzJr4oH0p9P6i8/PAg3mu/1D+OvRG660a8bOvht5f2F5JymJNCZUbXkR1uyYBgMJhxOn+O+64f/COgcWZ0P1NyjaE9E3ZKC4OUHi3/71psA3bGMjF0DAuH3QlTDZw5P2krHbLO6PqQO5EqGdabNpz6p5bDEATdgx9OB3VJACQK06xOhumm4EyWD4P460H3Rbxj/BZS9aQb0norRd+K6UN2xbIxSDudsheRiluvBdHy2UF1fH9891gxFwXVB2Wncs4x+4SryNrKTABMQC1Ohh608atGwcAxe3OCSQmLXFR8+c61hbv51wT6eJMoCOhN2Isqw3bEsjFDf/Swtcb/WsZNfspjgD9MKSHc5dDby1y2qvqQO5yxjleLPE6zmecZ6fbDEAd4l8iPxn6EDquWQAg19FQfhA3HL5s7khbbC5wPTwprmUV1+69MUafaNqOfj1G1S+GHEXWHo6h26WUY8TRgS/oGq1VdSB3L+McZU7p/yrjPPvdZgCqFv+6eXnoJc8HEADkey9UG8YNhhNPt7wt4npnfweB3Djixh9xDe0bYfyQtklxc8AHKXU7M+ax4qjACyF9Cus23aSVqgzkFuT0/yUlXseZjPMcc5sBqNqbAx8834beGjgAQLbXUr7EPeh/nsZ/H0eMDe6cGv85bniwr/9F8G4oHsJcanl7fFbwOugFDq+H3pTkSUdNNmV3Rr0uTnjMGOb+nnGtz+kyrVNlILckp/+XuRv16YzznHabAajjpTAO1/YXSAAoZksYHcTFdbHG+cNW/OIZR2EU3ZF1X0vbY3coHibN93euw0m5NtBnfup/8Y995+fQ7kAuBsxpUwnvhun+qBuD6vspx76elJUeO61SZSC3usZnyKcZ5/nCbQYAAGiPOJrnWnhy9NqGKY65KRSbtvhrC9sjBiX/BoFcEX8O3Mc3wuiQqchIwzsN3eesPvp2Cec4nnH8Cx49rVJlILe1xmfIyYzznHWbAQAA2mN4E6Q4umlBCcfdGIpNYV3Xsvb4dqh+eeHcfHasf5+zrArtDOS+zahPDOoWl3COGHZn7Vb8qsdPa1QZyG2v8RlyIgjkAAAAWm9jqHZH8iMhP4x5uUXtcXiobnF017dBIDetP0O7Arn9OfUpc/H7rIAkbm6yQvdohSoDuW01PkNeCwI5AACA1js38GXtZAXHj4uV3875MtqWhcbjSL3B9cT+Cr0RTgK56X0T2hPIxZFvWZtPxHXwytwQ7Omcaz+le7RClYHc0zU+Qz4KAjkAAIBWWz/wRe37Cs9zJufL6JctaIs4RfdSeDyU2dz/dwK56Z0L7QnkjubU5YcKznkxZAeA63WRxlUZyC0N7VhDzqYOAAAALfBwJEXc8bHKaXMHcr6MtmHUxrGQPnVXIDe9tgRyC5NyM6cuhys47+uhvlGieeuVtaWcblkfrTKQW5jTFgtLvI5THWpzAACAeSeOCHu4WcGOis+1K7R7hNzz4cmdXwc3tRDITa8tgdwrIT8oWlPBedflnPN+6G1+UQaB3GSqDORC/x6nnWNxideRtavxMY8iAACAZj0Myb6q4Vx5AcEHDbbDkqRcHahL3BV2ePqgQG56bQnkfsqpx18Vnvtazrnfren3TSA3WtWBXNa6hU+VeB1fZJxnv0cRAABAs+KaRnuSsrqGc+UFBHsabIfh6V2jpisK5KbXhkDuqZAfEp2p8Pxf5pz7ak2/bwK50aoO5M5nnGNbTb9rOz2KAAAA5o+sKatxGtfyhuq1c6gu36X8dwK5akOCugK5vHXcYjlY4flfLXD+50s4j0BuMlUHclmb2+wq8Tq+yzjPKo8iAACA+SNrU4evGqrTyvD44v43M76sCuSm14ZA7nzID4m2VHj+bQXOf1xXaUzVgdyhUM9U0lsp57jnFgMAAMwvn2Z8EX22oTp9M1SP3Rn/rUBuek0HcnGTjrmcOjwIj2/mUbZFIT+Q+1VXaUzVgdwLofogdkG/H486x3duMQAAwPxyJbRrytrwTpuf5fz3ArnpNR3IbQ75Ydj1GtrhdsgPBZfqLo2oOpCLYVnaTqtlrV24NuM63nOLAQAA5o/nQvoC9k0ED/EL652BevxdoB4Cuek1Hci9FvIDufM1tMO3Berxku7SiKoDuejHlHP8XNLxd4d6No4AAACg5UbtLBnXa1vbUH1+HqrL5gI/I5CbXtOBXN4Op1XvsPrQF8E6cm1VRyB3JOUccxUf/26odjo2AAAALTJqdFwM4zY1VJ+jYbLgQyA3vaYDuV9CfhB2rIZ2OFGgHud0l0bUEcitC9Wup/l1aC5sBgAAoAXiNNDhteOu9r+QNiGGgIOLnV8OxUeMCOSm13Qgl7ehQywv19AOBwrU4x/dpRF1BHLRpZTzvFrCsdPWKHzR7QUAAJgfhkOsOGWwqcXq4+6Wg+HgvaSsn+JaBHLjazKQWxLyQ7C61m7bU6AeVe/2ymh1BXJp6xmenfK4aet1CngBAADmgcVJ+SY8vnPl3obr9PHQF9TXx/x5gdz0mgzktoZigdyOGtphZ8G6bNBlaldXILckPL6xzOA6cgunOO7xlPq/7dYCAADMtqfCk9Ox/ul/IWxqdNz2ofpcmOAYArnpNRnI7Q7FQrAXamiHNoWDPK6uQC46XsG5ro04XpzCusythflle8EPmlkoFl0FAO8b3jd607DuZFzDrdAL5hbVWKflSbkxUId/k7JqguMI5KbXZCD3csHfszpC42UF67JXl6nVglBvILe8/0wcPtcvEx4vLXQ2Og68IHtBBgC8b8zo+8aupPw+xrX8HepbYPyroXPvnvA4ArnpNRnIHSrYN+sIixcXrMtBXaZWqxq4F6+knG/7BMca9Qz+I1iLELwge0EGALxvzNT7xsJ+yPHbFNd0uuIAZHhU1OdTHEsgN70mA7mPCvbJOsKLRQXrclyXqdW+jHvxYYXn/XLE+f4MveC2qDdGHONuUp5xW8ELshdkAMD7xmy8b8Rd/OIGCbdKuq6fk7KygnrGtexuh8dH5U0zHVEgN70mA7nTBftjXYrU5VNdplYXM+7FlQrPG4O3H8PkO65uDr1do4d36X3RLQUvyF6QAQDvG91/34ij4a5WdG1xlN3ykus7/AV385THE8hNTyD3SNERpNTjg1AsIK1qBOXilGdMnHKf9YeEl8KT63bG/9uGIOAF2QsyAOB9Y0beN77sf9GL06DmKri+b0qs65FQ/tQ/gdz0BHKPCOSaE8P5OHosrid5IvRGz46z/mWcvrqnf4y4K2+ZG4EcTcr9oXPe6P//t/bPtbZ//gsj6nc5KevdYsALMgDgfWO23zcW9b/87Qy9XQjPjPnltoqdDJ8Z+kIbR9+VMapFIDc9gdwjArlmrKjg2Xyy5DquS8oXoTfttGgd/gq9Uczz0n+K0qGC542iKIqieN+gSnGduY/Ck1Op8kocCbJ4ivPGgHBwp8G5UN5oEYFctwO5UwI5OhgexpDty/5z7eHo5Fhu9Z9JcartC74gK4oXZDxvFEVRFMX7BoOWJeX9MN5Ij7emON+HQ8d6vcRrEch1O5A72cFA7qQuA74gK16Q8bxRFEVRFO8bTCpOI/2rYN/5c8JzbB06zoWSr0Eg1+1A7tUOBnLHdBnwBVnxgoznjaIoiqJ432AacfrVbwX7zzNjHjvu0Hpt4OfjdK5VAjmB3IADBfveohraYVHBuhzUZcAXZMULMp43iqIoiuJ9g2nFkOxGgf4z7rTVL4d+fk8FdRfIdTuQ21Pw2bWkhnZYUrAue3UZ8AVZ8YKM542iKIqieN+gDEV2xv1qjOPtHfrZMxXVWyDX7UBuR8Fn1/oa2mFlwbrs0GUAAACAspwP2UHEHwWPszr0pqc+/Lm/Q28jiSoI5KbXZCC3PBQLwV6soR22FazLWl0GAAAAKMuWkB1EzBU8zg9DP7elwjoL5KbXZCAXFdntd1cN7bCrQD1iXRfoMgAAAECZ4mi2rEAiL4x4Y+i/P1FxfQVy02s6kPsj5Adh+2poh70F6nFNdwEAAADK9lmYbrfLvICsrWXnPL7nTQdyZwvcn9dqaIdDBerxtUcEAAAAULaXg0Buvmk6kDtW4P6crqEdTheox3seEQAAAEDZ8na9zJuyKpDrnqYDuSJrt51tQTvUtZYdAAAAMM+sCdNt6iCQ656mA7mlBe7P5Rra4deQv6HDEo8IACa1vaMvSZOUc243AHjf8L5RWjjyR4GfF8h1T9OBXPR7KGeH32nMheZDQQC8IHtBBgC8b8zD940lYbppgwK57mlDIPdRgXu0tsLzry1w/hMBALwgC+QAwPuG940KZE1ZfauF9c0LAMnXhkBua4HftT0Vnn9vgfNv1lUA8IIskAMA7xveN6qwM+Na/9fC+grkpteGQC5uFvJvTj0+rPD8H+ec+7puAoAXZIEcAHjf8L5RlQMp1/lPS+srkJteGwK56JOcelys8Ny/hObCQAC8IHtBBgC8b8zz940vUq7z/ZbWVyA3vbYEcptC/i6niyo479L+sbPOvVE3AcALskAOALxveN+oyo2UIOTpltZXIDe9tgRy0eWcuuyu4Jz7cs75ky4CAAAAVCUtSD3d4joL5KbXpkDuYE5dzjRw/Xt0EQAAAKAqP4bRYczqFtdZIDe9NgVycXOHfzLqci+UO211RVLuZ5zviu4BAAAAVGVHGB1IvN7yercxkFuTlJNJuZaUudDbPfRUUta2tA3bFMhFh3Pqc7jEcx3JOdd+jwY6qGvPIAAAgFZ5ISkn+l+kDvS/ZFVhef+L23AY8W0H2qhtgdyWpNwK6cHW9ha24fnQrkAujpL7LVQ/am1hSr9/WC55BNFBXXwGAQAAtEIMCr4OozdXiKOZyt7xcVSo9XfoTedruzYFcqszvggPfiFu2yiVK6FdgVy0KWTvfPpKCefIGh13P9hZle7p6jMIAACgFd7N+UIVg4oPQjlraZ0ZcfzrHfrC1qZA7mQotjPvmRa135KQHXw97G8LGqjbmxl1uhmmC4xX94OJtOO/6TFEB3XxGQQAANAafxb8UhX/u60TnmNZGD1V8WpSnu5QW7UpkLte8L7da1H7HSpY520N1e/zjDqdn/CYMVz8MeO4n3kE0VFdfAYBAAC0Rt6Uo1HBxHNjHH9fGL2TZZwmu7xjbdWmQO7+GPdsUQvabmlS/ipY3+8brOdXGfU6NcHxzmYc72uPHzqsa88gAACAVsnb9TKtXE7K20l5cejLVvznuIvq8TA6gImjKrq6m2SbArmiQWpTU0AHrUrKxTH718kG6/1JyA7Rlhe85gs51wdd1qVnEAAAQOvsCJMFcuOWuA7XO6G3jlhXtSmQ+zy0e7RZDK12hV7wdHfCPhM3+zgWngx96xBD49sp9fo3KUeT8tSIn1vbr3Paz8a15F722GEGtP0ZBAAA0Hp5GztMU+L6WQdDbzfXrmtTILcu9NZmyhuZsqmm+mxJyo3QGzUzV1FfmusfP55nbw3XFDdjOBPyd5H8sV/u5Py3cfrqGo8bZkTbnkEAAACdFEfKXQ7ThyYxlIjT+uIC/qtmrI3aFMg9vGdpo8/iF+U9NdZle6hnpOXDcqDGa9uQlE9DfuCWdh/i2nPPeMQwo58bbXkGAQAAdFoMHw6H3sig70Jvel78wjU3UOL/HUcpxQ0e4qif4/0vXus0X+3iFMkY+Nzs35v4v6fdi0rEdbDi9Nn3Q2/txatDvxvxn//q/7sT/f/W2ll4BgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUMhzSflIMwAAAABAtRYl5UBS/k3KW5oDAAAAANJtSMp/JZW5pCzTpAAAAACQ7nQoL5A7pTkBAAAAIN2apDwI5QVymzQpAAAAAKT7IJQXxv2sOQEAAAAg3ZKk3AnlBXIHNSkAAAAApDsSygni7iflbFIWaFIAAAAAGC2GZ9fCo1BttyYBAAAAgOocCI/CuKuaAwAAAACq9Xt4FMi9pjkAAAAAoDrbwqMw7nqw9hsAAExkcNpJleVBUuaSci8pt/sv8d+F3kLOp/r12JGURW4JALTWjwOf7W9rDgAAmExdgdw4wV2cCvNxUl4M/vIOAG2xaeDz+m5SlmoSAACYTAy8ViVlZ+iFc2eS8ndoT0B3Jyknk/KsWwUAjfpi4PP5j6TsTco6zQIAAOXZlZR/QrtGz8VpMs+7NcA89UwQftCcp0JvFPuoz+e4HMXXoTeF9X+aCgAAphO/+N0PxQOzW0l5OTy5DtzCpCxLygtJ2Z2Uw6E3Eu9Sxst9Vonrzq1ye4B5ZE3o/ZHklKbItTwpx7VV6T4c43M6rhX7ZVL29N8BAACAMX01xgv4kQmOv6j/wn4ujBfO3Qy9abYAs2xlUg71n3nx2bdJk6SKf/g5Fnprmz1c8qDNNibljdALrn4NvRArbn4U/xB2r3/P42fjB0nZHppdU3XpQLtOsvTER0l5WhcFAIDixtn0YceU51odeps5jPOi/45bBLTA5VD9tP2fNfNIMSx6N/QCreEgqG1iaBindV6Z4P7/m5T3+5+VdTtaQv+NQeOJpCzWZQEAIN/WMV62t5d0zrj+zPUxznvMbQIatC3Us47mQU39mCWh90eZWyF9ZFabxCDudsie5vl96I2Wm8v47+LouRhA1jVibsGYn8l5JW4GYS1EAAAo8IWn7kAuiiMAxtlUYq9bBTTkYqg+jIvTFxdo6v8XR1jFJRL+DflTJdtgfVJ+S6njjf61jFoXNe4uHtdtSwvn4qjMtTXUP34eX+23d5y2+qCE/hxD1C26MgAApFsQmgnkHn4ZmRvj5d5GD0DdNoV6Rse9p6n/f83Rt0IvxCq6dlnTdvTrMap+50NvA4o8MXS7lPHZ90ID1xWnCcd1XOP6hl+McU+G789m3RoAANI1FchFx8Y4/8duFVCzs6H6MC6OSHpqHrdx3KXzzTB+6NN0ILcvpI8mOzPmseKowAshfQrrthbcp+f7n8N3wnjr4q31GAEAgNGaDOTG2dktLhi9zO0CarIu1DM67ut52r5xhPbrYbzlC9oSyO3OqNfFKT4Pf8+41udact/iUhdFphQPrilnowcAABihyUAu+myMOhxyu4CanAz1BHJb51m7xiDucFKuhUcjBH9KyunQW1Pt59DuQC5Ow7yXUqf4B6Y1Uxx7Q+j98WnUsePGCytbdB/jH8g+CUa4AwDAxJoO5HaPUYezbhdQgxh83A/VTlONAcuRedi2f/bbIO42+kYYHTIV+UPNnYb6RdbU2rdLOMfxjONfaOH9jIHyzQL3a6PHCgAAPK7pQG6cnV6vu11ADYZDkT81SWni2qF54cyq0M5A7tuM+sSgroypmXHq6u2M87zawnsa79evwR/UAABgLE0HciGMt0j0ArcMqFD8I8FwIHJQs9Tuz9CuQG5/Tn2OlXiuEyF71/EVLbxfcUfZyyF7HVhryQEAwIA2BHI/jFGPVW4ZUKEjQ8+cuNaZPwTU75vQnkAuBklZm0/EKchrSjzf0znXfqql92x1yN7sYY9uDQAAj7QhkPtmjHq84JYBFYnB23Dw8rpmacS50J5A7mhOXX6o4JwXQ3YAuL6l9y1rJOEnujUAADzShkDuXBDIAc07FJ5cF2yRZmlEWwK5hSF/04LDFZz39Zxznm7xvbuUUudzujUAADzStRFypqwCVRlet+yoJmlMWwK5Vwp8Lq2p4Lzrcs55v8WfhwdS6nxVtwYAgEfaEMh9H2zqADRr19Cz5m5SlmmWxrQlkPsppx5/VXjuaznnfrel9y6OKrwf2rEzLgAAtFaXdlm94XYBFfl56HnzviZpVBsCuacKfC6dqfD8X+acu80jzs4HgRwAAGRqOpBbM0YdzrpdQAW2jHjexEBuZ+jtsEn92hDI5a3jFsvBCs//aoHzP9/S+3ciCOQAACBT04Hcq2PU4ZDbBVTg25A/EumL/jPoGc1VizYEcucLfC5tqfD82wqc/3hL79/LI+p6S7cGAIBHmg7kfi54/rgezQq3CyjZhjGeg4PBQhyxGwO61ZqwEk0HcnG90rmcOjwI1a5ruqhAX/y1pfdv94i6XtKtAQDgkSYDuf+Ncf5TbhVQgc/C+IHccLmclCOhmt0256umA7nNBe779Rra4XbIDwWXtvD+jQrkvtKtAQDgkaYCuQX9L7FFR8c97VYBJYuL9j8I0wdyg+HIhaRs1bRTazqQe63A/T5fQzt8W6AeL7Xw/u0ZUc8TujUAADzSVCD34RjnPuY2ARX4IJQXxg2XX5KySRNPrOlA7svQ7A6rD30RurmO3IHQjeAQAAAa00Qg9+YY5/0pVLtGDzA/LU/K3VBdIPewxD8+LNTcY2s6kPsltOOPRScK1ONcC+/f5+HJ0aN2LAYAgAF1BnIxWPtojHP+nZSVbhFQgbdD9WHc4GL2Nn8YT9OB3FyB+/pyDe1woEA9/mnh/bsS6p/eCwAAnVJXIPdcUn4b43xXfYEFKhQXnY/rc30Xers9x51T74XqQrm4AcB6zV5Yk4HckoL3tI4pmHtCsbUL2zSS/NkRddyhSwMAwOOqDOTiF4SdobfI+ThfXOM0VSPjgCYsSsozoReEvB96gd39UE4odzMI5YpqMpDbWvB+1hEy7SxYlw0tunfDOxf/qjsDAMCTin6RPJqU/yVlaf8L66gvsRuTsispbyXlqzDZ+kyfBGvGAe0Sn0nb+8+nG2H6kXKrNGmuJgO53QXv5Qs1tEObwsEi4nvA4M7F8Z9tbgIAACP815LyVyh/J1eAssVwLgY2F6d43sURQxa4z9ZkIPdywfu4tIZ2WFawLnsnOPaK/rWeTMobSdlWQn0vDdXrHV0ZAABGazqIi4tRxxF1i9wKoGOeT8oPEz77vtB8mZoM5A4VvId1fG4tLliXg2MeN06dvjXiONf61z+J4U2bzurGAACQrokQ7m7/RT2u0WR6KtB1cXH/vyd4Fr6s6VI1GcgV3Q28js+vRQXrcnzM436cc7wYNI+zlutbQz9/zuc7AABkK/rFMe5C+F3/S+ft0NuNcC48vk7MXP//H//99f5/H1/Kz4TeGnQxgLOgOTCL4s6cn4bxArk4Qmm5phupyUDudMH716bP6U/HPOaXodgI9i05x1kYngz3PtF9AQCgnBf9SXdZBZhv4mi5O2M8W49rspEEcuN9Tp8e85iHx+ijn4feZg2DYhAXp8n+GR4PmPfrugAAUN6LvkAOoLhnk3Kz4LM1BkvW0HySQG68z+lxA7k4nfS7MP4Owd+G3qYk98PjI+TjqLiVui0AAJT7oi+QAxhPnJ5fNJQ7oLmeIJAb73P69ITHPjJGPx0uV5NyLClrdFcAAKjmRV8gBzC+uP7WgwLPV7tRPqnJQO5UmD+BXBRHy+0IvbXgvgm9gO7hOrGxxI2YbiTlfFI+C70AeYMuCgAA1b/oC+QAJvN2KLbzNI9rMpA7GboXyJ3UZQAAoFsEcgDV+qPAM3adZnpMk4Hcq6F7gdwxXQYAALpFIAdQrV0FnrG7NdNjmgzkDhT8XKxjM45FBetyUJcBAIBuEcgBVO9KEKiMo8lAbk/Bz8UlNbTDkoJ12avLAABAtwjkAKqXt5bcR5roMU0GcjsKfi6ur6EdVhasyw5dBgAAukUgB1C9DaG6XTJnUZOB3PKCn4sv1tAO2wrWZa0uAwAA3SKQA6jHv0EgV1STgVz0oMDn4q4a2qHI+oOxrgt0GQAA6BaBHEA9skImgVzxtqojkCuyM+6+Gtphb4F6XNNdAACgewRyAPU4nfGMPal5HtN0IHe2wOfiazW0w6EC9fhadwEAgO4RyAHU4/WMZ+ybmucxTQdyxwp8LtYxqvF0gXq8p7sAAED3COQA6nEg4xm7X/M8pulArsjabWdb0A51rWUHAACUTCAHUI+sQG6n5nlM04Hc0gKfi5draIdfQ/6GDkt0FwAA6B6BHEA9Xsl4xq7SPI9pOpCLfs+pw1wNdZgLzYeCAABABQRyAPU4EZoLl7qmDYHcRwU+G9dWeP61Bc5/QlcBAIBuEsgB1CNt5067ZD6pDYHc1gKfjXsqPP/eAuffrKsAAED3LAjFA7kXNRfAVK6mPF8Pa5ontCGQi5+R/+bU48MKz/9xzrmv6yYAANBNS0LxQM4ubgCTWx3SF+W3ftyT2hDIRZ/k1ONihef+JTQXBgIAABV6IRQP5A5oLoCJvZnybL2gaUZqSyC3KeTvcrqogvMu7R8769wbdRMAAOimPaF4IPeZ5gKY2J8pz9atmmaktgRy0eWcuuyu4Jz7cs75ky4CAADdVWQHuYflquYCmMjulOfqj5omVZsCuYM5dTnTwPXv0UUAAKC7robigVwsOzUZwFjixgCjRsfF6YimHKZrUyAX7+E/GXW5F8qdtroiKfczzndF9wAAgO76MIwXxsVyMynPaTpgBsRNbeI6misrPs97Kc/TozVf75qknEzKtaTMhd7uoaeSsral96dNgVx0OKc+Ze6UeyTnXPv9+gIAQPstTMri0AvS4rSp42H8kXGj1q6JXyZfSsqz/eMv1NRABxwKT452igFVDIDKHgWctnHOtzVf85ak3Arpwdb2Ft6n86FdgVwcJfdbqH7UWvwsvZZxnkt+hQEAoP0OhOmCt3HLaU0OtFjeQvmxxNDl+RLO9XTojSoePn7cIGBpjde8OqSHcYPhVttGyl0J7QrkorjjatbOp6+UcI6s0XFxGqtpzgAA0AECOYBHLozxPDs2xXni9NBRo5x+D9VPkR12suD1nmnRfYrTiR/k1Df++wUN1O3NkL2sw4opjh3D0zsZx3/TrzAAAADQNbfDeH9k+CEpq8Y8x+YwemTcxaQsb+Carxe81nstuk+HCtZ5W0P1+zyjTucnPGYMF3/MOO5nfn0BAACALorTRccd+Rune75W4NhxGur7YfTIrjh6uKl1Nu+Pca2LWnCPYjv+VbC+3zdYz68y6nVqguOdzTje1351AQAAgK6Km9FMOiX/av/n40Y2D6dKxg1tdiXlkzB6qmHcyXRvw9d8q+D1NTUFdFAcjXhxzPtyssF6fxKyQ7TlBa/5Qs71AQAAAHRWHKU2buAzSYnh1kehmSmqwz4P7R5tFtsohpoxeLo7YXv/HXpr/r0Y6h/ltz+kT4WOgWwMcZ8a8XNr+3VO+9kY8L7sVxYAAACYBXFUW5xSWEUQF0OUD0Nvh9W2WBd668PlBYibaqrPlqTcCL2Re3MV3Ye5/vHjeeoYoRg3YzhToG/82C93cv7bOH11jV9VAAAAYNbEqadx9Ng4a6yNKnFUVwxQ4kiphS291h0hffRZDOv21FiX7aHe3b8P1HhtG5LyacgP3NLuQwyKn/GrCQAAAMy6GKLFKZNxQ4a4UH/c+CFOI5wbKDEsiSOuLiXlXOgFJzGAe7ZD17m2X++b/WuK/xs3m1inC5Qurmn3Yr9Pxf4S1x+8O9Cf4j//1f93J/r/7QLNBgBA1/wfQTcLJVksA9cAAAHRdEVYdE1hdGhNTAA8bWF0aCB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OC9NYXRoL01hdGhNTCI+PG1mcmFjPjxtc3ViPjxtaSBtYXRodmFyaWFudD0ibm9ybWFsIj5GPC9taT48bWk+aGQ8L21pPjwvbXN1Yj48bWkgbWF0aHZhcmlhbnQ9Im5vcm1hbCI+UDwvbWk+PC9tZnJhYz48bW8+PTwvbW8+PG1mcmFjPjxtcm93Pjxtbj4xPC9tbj48bW8+LDwvbW8+PG1uPjc8L21uPjxtbz4uPC9tbz48bXN1cD48bW4+MTA8L21uPjxtcm93Pjxtbz4tPC9tbz48bW4+MzwvbW4+PC9tcm93PjwvbXN1cD48L21yb3c+PG1yb3c+PG1uPjU8L21uPjxtbz4uPC9tbz48bXN1cD48bW4+MTA8L21uPjxtbj41PC9tbj48L21zdXA+PC9tcm93PjwvbWZyYWM+PG1vPj08L21vPjxtbj4zNDwvbW4+PG1vPi48L21vPjxtc3VwPjxtbj4xMDwvbW4+PG1yb3c+PG1vPi08L21vPjxtbj4xMDwvbW4+PC9tcm93PjwvbXN1cD48bW8+LjwvbW8+PC9tYXRoPtAfL7kAAAAASUVORK5CYII=" style="width height margin-left margin-top transform rotate translateZ0px; -webkit-transform rotate translateZ0px;" title="straight F subscript hd over straight P equals fraction numerator 1 comma to the power of negative 3 end exponent over denominator to the power of 5 end fraction equals to the power of negative 10 end exponent.">Hai xe có khối lượng cùng nhau nên có cùng trọng lượngLực hấp dẫn giữa hai xe Ta được 1
Câu hỏi Hai xe tải giống nhau, mỗi xe có khối lượng có trọng lượng P, ở cách xa nhau 30m. Lấy g =9,8m/s2. Độ lớn lực hấp dẫn giữa chúng bằng A. P. B. P. C. P. D. P. Hai xe tải giống nhau, mỗi xe có khối lượng có trọng lượng P, ở cách xa nhau 30m. Lấy g 9,8m/s2. Độ lớn lực hấp dẫn giữa chúng bằng A. P. B. P. C. P. D. tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng ở cách xa nhau 40m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g =9,8m/s2 A. B. C. 8, D. Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng 2. 10 4 kg, ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P của mỗi xe ? Lấy g 9,8 m/ s 2 A. 34. 10 - 10 P. B. 34. 10 - 8...Đọc tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng kg ở cách xa nhau 40 m. Lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P mỗi xe? Lấy g 9,8 m/ s 2 . A. 34. 10 - 10 P B. 85. 10 - 8 P. C. 34....Đọc tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng 2 . 10 4 k g , ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g 9 , 8 m / s 2 A. 34 . 10 - 10 B....Đọc tiếp Xem chi tiết Hai tàu thủy, mỗi chiếc có khối lượng 50 000 tấn ở cách nhau 1 km. Lấy g=10 m/s2. So sánh lực hấp dẫn giữa chúng với trọng lượng của một quả cân có khối lượng 20 g. A. Lớn hơn B. Bằng nhau C. Nhỏ hơn D. Chưa thể biết Xem chi tiết Hai tàu thủy, mỗi chiếc có khối lượng 50000 tấn ở cách nhau 1 km. So sánh lực hấp dẫn giữa chúng với trọng lượng của một quả cân có khối lượng 20 g. Lấy g = 10 m / s 2 A. Lớn hơn. B. Nhỏ hơn. C. Bằng nhau D. Chưa thể kết luận được. Xem chi tiết Hai xe tài giống nhau, mỗi xe có khối lượng 20 tấn, ở cách xa nhau l00 m. Tìm lực hấp dẫn giữa hai xe. A. 2, N. B. 2, N. C. 1, N. D. tiếp Xem chi tiết Hai tàu thủy, mỗi chiếc có khối lượng 50000 tấn ở cách nhau 1km. So sánh lực hấp dẫn giữa chúng với trọng lượng của một quả cân có khối lượng 20g. Lấy g 10m/s2. A. Lớn hơn B. Nhỏ hơn C. Bằng nhau D. Chưa thể kết luận đượcĐọc tiếp Xem chi tiết
Trang chủHai xe tải giống nhau, mỗi xe có khối lượng , ở cá...Câu hỏiHai xe tải giống nhau, mỗi xe có khối lượng , ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu? A. B. C. xe tải giống nhau, mỗi xe có khối lượng , ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu? A. B. C. D. TNT. NhãGiáo viênXác nhận câu trả lờiGiải thíchĐáp án C Đáp án C 1Yêu cầu Vàng miễn phí ngay bây giờ!Với Gold, bạn có thể đặt câu hỏi cho Diễn đàn bao nhiêu tùy thích, bạn biết mỗi vật điểm đặt của trọng lực0Xác nhận câu trả lờiMột vật ở trên mặt đất có trọng lượng 6 N. Khi ở một điểm cách bề mặt Trái Đất một khoảng 2R R là bán kính Trái Đất thì nó có trọng lượng bằng bao nhiêu? Lấy gia tốc rơi tự do ở sát mặt đất A. 4 ...1Xác nhận câu trả lờiHai vật cách nhau một khoảng r 1 thì lực hấp dẫn giữa chúng là F 1 . Để lực hấp dẫn giữa chúng tăng lên 9 lần thì khoảng cách r 2 giữa chúng A. tăng lên 3 lần B. tăng lên 9 lần C. giảm đi 3 ...1Xác nhận câu trả lờiKhi khối lượng của mỗi vật tăng lên gấp đôi và khoảng cách giữa chúng cũng tăng lên gấp đôi thì lực hấp dẫn giữa chúng có độ lớn1Xác nhận câu trả lờiHai xe tải giống nhau, mỗi xe có khối lượng 2, 4 kg, ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P của mỗi xe ? Lấy g = 9,8 m/s 2 . A. -10 P nhận câu trả lời
Câu hỏi Hai xe tải giống nhau, mỗi xe có khối lượng 2 . 10 4 k g , ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g = 9 , 8 m / s 2 A. 34 . 10 - 10 B. 34 . 10 - 8 C. 8 , 5 . 10 - 11 D. 85 . 10 - 8 Hai xe tải giống nhau, mỗi xe có khối lượng 2. 10 4 kg, ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P của mỗi xe ? Lấy g 9,8 m/ s 2 A. 34. 10 - 10 P. B. 34. 10 - 8...Đọc tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng ở cách xa nhau 40m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g =9,8m/s2 A. B. C. 8, D. Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng kg ở cách xa nhau 40 m. Lực hấp dẫn giữa chúng bằng bao nhiêu phần trọng lượng P mỗi xe? Lấy g 9,8 m/ s 2 . A. 34. 10 - 10 P B. 85. 10 - 8 P. C. 34....Đọc tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng có trọng lượng P, ở cách xa nhau 30m. Lấy g 9,8m/s2. Độ lớn lực hấp dẫn giữa chúng bằng A. P. B. P. C. P. D. tiếp Xem chi tiết Hai xe tải giống nhau, mỗi xe có khối lượng có trọng lượng P, ở cách xa nhau 30m. Lấy g 9,8m/s2. Độ lớn lực hấp dẫn giữa chúng bằng A. P. B. P. C. P. D. tiếp Xem chi tiết Hai tàu thủy, mỗi chiếc có khối lượng 50 000 tấn ở cách nhau 1 km. Lấy g=10 m/s2. So sánh lực hấp dẫn giữa chúng với trọng lượng của một quả cân có khối lượng 20 g. A. Lớn hơn B. Bằng nhau C. Nhỏ hơn D. Chưa thể biết Xem chi tiết Hai tàu thủy, mỗi chiếc có khối lượng 50000 tấn ở cách nhau 1 km. So sánh lực hấp dẫn giữa chúng với trọng lượng của một quả cân có khối lượng 20 g. Lấy g = 10 m / s 2 A. Lớn hơn. B. Nhỏ hơn. C. Bằng nhau D. Chưa thể kết luận được. Xem chi tiết Hai xe tài giống nhau, mỗi xe có khối lượng 20 tấn, ở cách xa nhau l00 m. Tìm lực hấp dẫn giữa hai xe. A. 2, N. B. 2, N. C. 1, N. D. tiếp Xem chi tiết Hai chiếc tàu thủy mồi chiếc có khối lượng 10 000 tấn ở cách nhau 100 m. Lực hấp dẫn giữa chúng là F h d . Trọng lượng P của quả cân có khối lượng 667 g. Tỉ số F h d / P bằng A. 0,1. B. 10. C. 0,01. D. tiếp Xem chi tiết
Câu hỏiHai xe tải giống nhau, mỗi xe có khối lượng 4 kg, ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g = 9,8 m/s 2 A. 34. 10 -10 B. 34. 10 -8 C. 8,5. 10 -11 D. 85. 10 -8Hai xe tải giống nhau, mỗi xe có khối lượng ở cách xa nhau 40 m. Hỏi lực hấp dẫn giữa chúng bằng bao nhiêu lần trọng lượng của mỗi xe? Biết g = 9,8 m/s2 A. 34. 10-10 B. 34. 10-8 C. 8,5. 10-11 D. 85. 10-8 34. 10-1034. 10-88,5. 10-1185. 10-8Giải thíchĐáp án C. 8,5. 10 -11 Lực hấp dẫn giữa hai xe là Đáp án C. 8,5. 10-11 Lực hấp dẫn giữa hai xe là 1
hai xe tải giống nhau mỗi xe có khối lượng